123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- /* -----------------------------------------------------------------------------
- Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
- Permission is hereby granted, free of charge, to any person obtaining
- a copy of this software and associated documentation files (the
- "Software"), to deal in the Software without restriction, including
- without limitation the rights to use, copy, modify, merge, publish,
- distribute, sublicense, and/or sell copies of the Software, and to
- permit persons to whom the Software is furnished to do so, subject to
- the following conditions:
- The above copyright notice and this permission notice shall be included
- in all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- -------------------------------------------------------------------------- */
- /*! @file
- The symmetric eigensystem solver algorithm is from
- http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf
- */
- #include "maths.h"
- #include "simd.h"
- #include <cfloat>
- namespace squish {
- Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights )
- {
- // compute the centroid
- float total = 0.0f;
- Vec3 centroid( 0.0f );
- for( int i = 0; i < n; ++i )
- {
- total += weights[i];
- centroid += weights[i]*points[i];
- }
- if( total > FLT_EPSILON )
- centroid /= total;
- // accumulate the covariance matrix
- Sym3x3 covariance( 0.0f );
- for( int i = 0; i < n; ++i )
- {
- Vec3 a = points[i] - centroid;
- Vec3 b = weights[i]*a;
- covariance[0] += a.X()*b.X();
- covariance[1] += a.X()*b.Y();
- covariance[2] += a.X()*b.Z();
- covariance[3] += a.Y()*b.Y();
- covariance[4] += a.Y()*b.Z();
- covariance[5] += a.Z()*b.Z();
- }
- // return it
- return covariance;
- }
- #if 0
- static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue )
- {
- // compute M
- Sym3x3 m;
- m[0] = matrix[0] - evalue;
- m[1] = matrix[1];
- m[2] = matrix[2];
- m[3] = matrix[3] - evalue;
- m[4] = matrix[4];
- m[5] = matrix[5] - evalue;
- // compute U
- Sym3x3 u;
- u[0] = m[3]*m[5] - m[4]*m[4];
- u[1] = m[2]*m[4] - m[1]*m[5];
- u[2] = m[1]*m[4] - m[2]*m[3];
- u[3] = m[0]*m[5] - m[2]*m[2];
- u[4] = m[1]*m[2] - m[4]*m[0];
- u[5] = m[0]*m[3] - m[1]*m[1];
- // find the largest component
- float mc = std::fabs( u[0] );
- int mi = 0;
- for( int i = 1; i < 6; ++i )
- {
- float c = std::fabs( u[i] );
- if( c > mc )
- {
- mc = c;
- mi = i;
- }
- }
- // pick the column with this component
- switch( mi )
- {
- case 0:
- return Vec3( u[0], u[1], u[2] );
- case 1:
- case 3:
- return Vec3( u[1], u[3], u[4] );
- default:
- return Vec3( u[2], u[4], u[5] );
- }
- }
- static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue )
- {
- // compute M
- Sym3x3 m;
- m[0] = matrix[0] - evalue;
- m[1] = matrix[1];
- m[2] = matrix[2];
- m[3] = matrix[3] - evalue;
- m[4] = matrix[4];
- m[5] = matrix[5] - evalue;
- // find the largest component
- float mc = std::fabs( m[0] );
- int mi = 0;
- for( int i = 1; i < 6; ++i )
- {
- float c = std::fabs( m[i] );
- if( c > mc )
- {
- mc = c;
- mi = i;
- }
- }
- // pick the first eigenvector based on this index
- switch( mi )
- {
- case 0:
- case 1:
- return Vec3( -m[1], m[0], 0.0f );
- case 2:
- return Vec3( m[2], 0.0f, -m[0] );
- case 3:
- case 4:
- return Vec3( 0.0f, -m[4], m[3] );
- default:
- return Vec3( 0.0f, -m[5], m[4] );
- }
- }
- Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
- {
- // compute the cubic coefficients
- float c0 = matrix[0]*matrix[3]*matrix[5]
- + 2.0f*matrix[1]*matrix[2]*matrix[4]
- - matrix[0]*matrix[4]*matrix[4]
- - matrix[3]*matrix[2]*matrix[2]
- - matrix[5]*matrix[1]*matrix[1];
- float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5]
- - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4];
- float c2 = matrix[0] + matrix[3] + matrix[5];
- // compute the quadratic coefficients
- float a = c1 - ( 1.0f/3.0f )*c2*c2;
- float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0;
- // compute the root count check
- float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a;
- // test the multiplicity
- if( FLT_EPSILON < Q )
- {
- // only one root, which implies we have a multiple of the identity
- return Vec3( 1.0f );
- }
- else if( Q < -FLT_EPSILON )
- {
- // three distinct roots
- float theta = std::atan2( std::sqrt( -Q ), -0.5f*b );
- float rho = std::sqrt( 0.25f*b*b - Q );
- float rt = std::pow( rho, 1.0f/3.0f );
- float ct = std::cos( theta/3.0f );
- float st = std::sin( theta/3.0f );
- float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct;
- float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st );
- float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st );
- // pick the larger
- if( std::fabs( l2 ) > std::fabs( l1 ) )
- l1 = l2;
- if( std::fabs( l3 ) > std::fabs( l1 ) )
- l1 = l3;
- // get the eigenvector
- return GetMultiplicity1Evector( matrix, l1 );
- }
- else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON )
- {
- // two roots
- float rt;
- if( b < 0.0f )
- rt = -std::pow( -0.5f*b, 1.0f/3.0f );
- else
- rt = std::pow( 0.5f*b, 1.0f/3.0f );
- float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated
- float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt;
- // get the eigenvector
- if( std::fabs( l1 ) > std::fabs( l2 ) )
- return GetMultiplicity2Evector( matrix, l1 );
- else
- return GetMultiplicity1Evector( matrix, l2 );
- }
- }
- #else
- #define POWER_ITERATION_COUNT 8
- Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
- {
- Vec4 const row0( matrix[0], matrix[1], matrix[2], 0.0f );
- Vec4 const row1( matrix[1], matrix[3], matrix[4], 0.0f );
- Vec4 const row2( matrix[2], matrix[4], matrix[5], 0.0f );
- Vec4 v = VEC4_CONST( 1.0f );
- for( int i = 0; i < POWER_ITERATION_COUNT; ++i )
- {
- // matrix multiply
- Vec4 w = row0*v.SplatX();
- w = MultiplyAdd(row1, v.SplatY(), w);
- w = MultiplyAdd(row2, v.SplatZ(), w);
- // get max component from xyz in all channels
- Vec4 a = Max(w.SplatX(), Max(w.SplatY(), w.SplatZ()));
- // divide through and advance
- v = w*Reciprocal(a);
- }
- return v.GetVec3();
- }
- #endif
- } // namespace squish
|