123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- /***********************************************************************
- Copyright (c) 2006-2011, Skype Limited. All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- - Neither the name of Internet Society, IETF or IETF Trust, nor the
- names of specific contributors, may be used to endorse or promote
- products derived from this software without specific prior written
- permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
- ***********************************************************************/
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "main_FLP.h"
- #include "tuning_parameters.h"
- /**********************************************************************
- * LDL Factorisation. Finds the upper triangular matrix L and the diagonal
- * Matrix D (only the diagonal elements returned in a vector)such that
- * the symmetric matric A is given by A = L*D*L'.
- **********************************************************************/
- static OPUS_INLINE void silk_LDL_FLP(
- silk_float *A, /* I/O Pointer to Symetric Square Matrix */
- opus_int M, /* I Size of Matrix */
- silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */
- silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */
- );
- /**********************************************************************
- * Function to solve linear equation Ax = b, when A is a MxM lower
- * triangular matrix, with ones on the diagonal.
- **********************************************************************/
- static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP(
- const silk_float *L, /* I Pointer to Lower Triangular Matrix */
- opus_int M, /* I Dim of Matrix equation */
- const silk_float *b, /* I b Vector */
- silk_float *x /* O x Vector */
- );
- /**********************************************************************
- * Function to solve linear equation (A^T)x = b, when A is a MxM lower
- * triangular, with ones on the diagonal. (ie then A^T is upper triangular)
- **********************************************************************/
- static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
- const silk_float *L, /* I Pointer to Lower Triangular Matrix */
- opus_int M, /* I Dim of Matrix equation */
- const silk_float *b, /* I b Vector */
- silk_float *x /* O x Vector */
- );
- /**********************************************************************
- * Function to solve linear equation Ax = b, when A is a MxM
- * symmetric square matrix - using LDL factorisation
- **********************************************************************/
- void silk_solve_LDL_FLP(
- silk_float *A, /* I/O Symmetric square matrix, out: reg. */
- const opus_int M, /* I Size of matrix */
- const silk_float *b, /* I Pointer to b vector */
- silk_float *x /* O Pointer to x solution vector */
- )
- {
- opus_int i;
- silk_float L[ MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ];
- silk_float T[ MAX_MATRIX_SIZE ];
- silk_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/
- silk_assert( M <= MAX_MATRIX_SIZE );
- /***************************************************
- Factorize A by LDL such that A = L*D*(L^T),
- where L is lower triangular with ones on diagonal
- ****************************************************/
- silk_LDL_FLP( A, M, &L[ 0 ][ 0 ], Dinv );
- /****************************************************
- * substitute D*(L^T) = T. ie:
- L*D*(L^T)*x = b => L*T = b <=> T = inv(L)*b
- ******************************************************/
- silk_SolveWithLowerTriangularWdiagOnes_FLP( &L[ 0 ][ 0 ], M, b, T );
- /****************************************************
- D*(L^T)*x = T <=> (L^T)*x = inv(D)*T, because D is
- diagonal just multiply with 1/d_i
- ****************************************************/
- for( i = 0; i < M; i++ ) {
- T[ i ] = T[ i ] * Dinv[ i ];
- }
- /****************************************************
- x = inv(L') * inv(D) * T
- *****************************************************/
- silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( &L[ 0 ][ 0 ], M, T, x );
- }
- static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
- const silk_float *L, /* I Pointer to Lower Triangular Matrix */
- opus_int M, /* I Dim of Matrix equation */
- const silk_float *b, /* I b Vector */
- silk_float *x /* O x Vector */
- )
- {
- opus_int i, j;
- silk_float temp;
- const silk_float *ptr1;
- for( i = M - 1; i >= 0; i-- ) {
- ptr1 = matrix_adr( L, 0, i, M );
- temp = 0;
- for( j = M - 1; j > i ; j-- ) {
- temp += ptr1[ j * M ] * x[ j ];
- }
- temp = b[ i ] - temp;
- x[ i ] = temp;
- }
- }
- static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP(
- const silk_float *L, /* I Pointer to Lower Triangular Matrix */
- opus_int M, /* I Dim of Matrix equation */
- const silk_float *b, /* I b Vector */
- silk_float *x /* O x Vector */
- )
- {
- opus_int i, j;
- silk_float temp;
- const silk_float *ptr1;
- for( i = 0; i < M; i++ ) {
- ptr1 = matrix_adr( L, i, 0, M );
- temp = 0;
- for( j = 0; j < i; j++ ) {
- temp += ptr1[ j ] * x[ j ];
- }
- temp = b[ i ] - temp;
- x[ i ] = temp;
- }
- }
- static OPUS_INLINE void silk_LDL_FLP(
- silk_float *A, /* I/O Pointer to Symetric Square Matrix */
- opus_int M, /* I Size of Matrix */
- silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */
- silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */
- )
- {
- opus_int i, j, k, loop_count, err = 1;
- silk_float *ptr1, *ptr2;
- double temp, diag_min_value;
- silk_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; /* temp arrays*/
- silk_assert( M <= MAX_MATRIX_SIZE );
- diag_min_value = FIND_LTP_COND_FAC * 0.5f * ( A[ 0 ] + A[ M * M - 1 ] );
- for( loop_count = 0; loop_count < M && err == 1; loop_count++ ) {
- err = 0;
- for( j = 0; j < M; j++ ) {
- ptr1 = matrix_adr( L, j, 0, M );
- temp = matrix_ptr( A, j, j, M ); /* element in row j column j*/
- for( i = 0; i < j; i++ ) {
- v[ i ] = ptr1[ i ] * D[ i ];
- temp -= ptr1[ i ] * v[ i ];
- }
- if( temp < diag_min_value ) {
- /* Badly conditioned matrix: add white noise and run again */
- temp = ( loop_count + 1 ) * diag_min_value - temp;
- for( i = 0; i < M; i++ ) {
- matrix_ptr( A, i, i, M ) += ( silk_float )temp;
- }
- err = 1;
- break;
- }
- D[ j ] = ( silk_float )temp;
- Dinv[ j ] = ( silk_float )( 1.0f / temp );
- matrix_ptr( L, j, j, M ) = 1.0f;
- ptr1 = matrix_adr( A, j, 0, M );
- ptr2 = matrix_adr( L, j + 1, 0, M);
- for( i = j + 1; i < M; i++ ) {
- temp = 0.0;
- for( k = 0; k < j; k++ ) {
- temp += ptr2[ k ] * v[ k ];
- }
- matrix_ptr( L, i, j, M ) = ( silk_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] );
- ptr2 += M; /* go to next column*/
- }
- }
- }
- silk_assert( err == 0 );
- }
|