123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- /***********************************************************************
- Copyright (c) 2006-2011, Skype Limited. All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- - Neither the name of Internet Society, IETF or IETF Trust, nor the
- names of specific contributors, may be used to endorse or promote
- products derived from this software without specific prior written
- permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
- ***********************************************************************/
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "main_FIX.h"
- #include "stack_alloc.h"
- #include "tuning_parameters.h"
- /*****************************/
- /* Internal function headers */
- /*****************************/
- typedef struct {
- opus_int32 Q36_part;
- opus_int32 Q48_part;
- } inv_D_t;
- /* Factorize square matrix A into LDL form */
- static OPUS_INLINE void silk_LDL_factorize_FIX(
- opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */
- opus_int M, /* I Size of Matrix */
- opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */
- inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
- );
- /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
- static OPUS_INLINE void silk_LS_SolveFirst_FIX(
- const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
- opus_int M, /* I Dim of Matrix equation */
- const opus_int32 *b, /* I b Vector */
- opus_int32 *x_Q16 /* O x Vector */
- );
- /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
- static OPUS_INLINE void silk_LS_SolveLast_FIX(
- const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
- const opus_int M, /* I Dim of Matrix equation */
- const opus_int32 *b, /* I b Vector */
- opus_int32 *x_Q16 /* O x Vector */
- );
- static OPUS_INLINE void silk_LS_divide_Q16_FIX(
- opus_int32 T[], /* I/O Numenator vector */
- inv_D_t *inv_D, /* I 1 / D vector */
- opus_int M /* I dimension */
- );
- /* Solves Ax = b, assuming A is symmetric */
- void silk_solve_LDL_FIX(
- opus_int32 *A, /* I Pointer to symetric square matrix A */
- opus_int M, /* I Size of matrix */
- const opus_int32 *b, /* I Pointer to b vector */
- opus_int32 *x_Q16 /* O Pointer to x solution vector */
- )
- {
- VARDECL( opus_int32, L_Q16 );
- opus_int32 Y[ MAX_MATRIX_SIZE ];
- inv_D_t inv_D[ MAX_MATRIX_SIZE ];
- SAVE_STACK;
- silk_assert( M <= MAX_MATRIX_SIZE );
- ALLOC( L_Q16, M * M, opus_int32 );
- /***************************************************
- Factorize A by LDL such that A = L*D*L',
- where L is lower triangular with ones on diagonal
- ****************************************************/
- silk_LDL_factorize_FIX( A, M, L_Q16, inv_D );
- /****************************************************
- * substitute D*L'*x = Y. ie:
- L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b
- ******************************************************/
- silk_LS_SolveFirst_FIX( L_Q16, M, b, Y );
- /****************************************************
- D*L'*x = Y <=> L'*x = inv(D)*Y, because D is
- diagonal just multiply with 1/d_i
- ****************************************************/
- silk_LS_divide_Q16_FIX( Y, inv_D, M );
- /****************************************************
- x = inv(L') * inv(D) * Y
- *****************************************************/
- silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 );
- RESTORE_STACK;
- }
- static OPUS_INLINE void silk_LDL_factorize_FIX(
- opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */
- opus_int M, /* I Size of Matrix */
- opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */
- inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
- )
- {
- opus_int i, j, k, status, loop_count;
- const opus_int32 *ptr1, *ptr2;
- opus_int32 diag_min_value, tmp_32, err;
- opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ];
- opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48;
- silk_assert( M <= MAX_MATRIX_SIZE );
- status = 1;
- diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 );
- for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) {
- status = 0;
- for( j = 0; j < M; j++ ) {
- ptr1 = matrix_adr( L_Q16, j, 0, M );
- tmp_32 = 0;
- for( i = 0; i < j; i++ ) {
- v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */
- tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */
- }
- tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 );
- if( tmp_32 < diag_min_value ) {
- tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 );
- /* Matrix not positive semi-definite, or ill conditioned */
- for( i = 0; i < M; i++ ) {
- matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 );
- }
- status = 1;
- break;
- }
- D_Q0[ j ] = tmp_32; /* always < max(Correlation) */
- /* two-step division */
- one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */
- one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */
- err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */
- one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */
- /* Save 1/Ds */
- inv_D[ j ].Q36_part = one_div_diag_Q36;
- inv_D[ j ].Q48_part = one_div_diag_Q48;
- matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */
- ptr1 = matrix_adr( A, j, 0, M );
- ptr2 = matrix_adr( L_Q16, j + 1, 0, M );
- for( i = j + 1; i < M; i++ ) {
- tmp_32 = 0;
- for( k = 0; k < j; k++ ) {
- tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */
- }
- tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */
- /* tmp_32 / D_Q0[j] : Divide to Q16 */
- matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ),
- silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );
- /* go to next column */
- ptr2 += M;
- }
- }
- }
- silk_assert( status == 0 );
- }
- static OPUS_INLINE void silk_LS_divide_Q16_FIX(
- opus_int32 T[], /* I/O Numenator vector */
- inv_D_t *inv_D, /* I 1 / D vector */
- opus_int M /* I dimension */
- )
- {
- opus_int i;
- opus_int32 tmp_32;
- opus_int32 one_div_diag_Q36, one_div_diag_Q48;
- for( i = 0; i < M; i++ ) {
- one_div_diag_Q36 = inv_D[ i ].Q36_part;
- one_div_diag_Q48 = inv_D[ i ].Q48_part;
- tmp_32 = T[ i ];
- T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );
- }
- }
- /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
- static OPUS_INLINE void silk_LS_SolveFirst_FIX(
- const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
- opus_int M, /* I Dim of Matrix equation */
- const opus_int32 *b, /* I b Vector */
- opus_int32 *x_Q16 /* O x Vector */
- )
- {
- opus_int i, j;
- const opus_int32 *ptr32;
- opus_int32 tmp_32;
- for( i = 0; i < M; i++ ) {
- ptr32 = matrix_adr( L_Q16, i, 0, M );
- tmp_32 = 0;
- for( j = 0; j < i; j++ ) {
- tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] );
- }
- x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 );
- }
- }
- /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
- static OPUS_INLINE void silk_LS_SolveLast_FIX(
- const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
- const opus_int M, /* I Dim of Matrix equation */
- const opus_int32 *b, /* I b Vector */
- opus_int32 *x_Q16 /* O x Vector */
- )
- {
- opus_int i, j;
- const opus_int32 *ptr32;
- opus_int32 tmp_32;
- for( i = M - 1; i >= 0; i-- ) {
- ptr32 = matrix_adr( L_Q16, 0, i, M );
- tmp_32 = 0;
- for( j = M - 1; j > i; j-- ) {
- tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] );
- }
- x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 );
- }
- }
|