123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- /***********************************************************************
- Copyright (c) 2006-2011, Skype Limited. All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- - Neither the name of Internet Society, IETF or IETF Trust, nor the
- names of specific contributors, may be used to endorse or promote
- products derived from this software without specific prior written
- permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
- ***********************************************************************/
- /* Conversion between prediction filter coefficients and NLSFs */
- /* Requires the order to be an even number */
- /* A piecewise linear approximation maps LSF <-> cos(LSF) */
- /* Therefore the result is not accurate NLSFs, but the two */
- /* functions are accurate inverses of each other */
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "SigProc_FIX.h"
- #include "tables.h"
- /* Number of binary divisions, when not in low complexity mode */
- #define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
- #define MAX_ITERATIONS_A2NLSF_FIX 30
- /* Helper function for A2NLSF(..) */
- /* Transforms polynomials from cos(n*f) to cos(f)^n */
- static OPUS_INLINE void silk_A2NLSF_trans_poly(
- opus_int32 *p, /* I/O Polynomial */
- const opus_int dd /* I Polynomial order (= filter order / 2 ) */
- )
- {
- opus_int k, n;
- for( k = 2; k <= dd; k++ ) {
- for( n = dd; n > k; n-- ) {
- p[ n - 2 ] -= p[ n ];
- }
- p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
- }
- }
- /* Helper function for A2NLSF(..) */
- /* Polynomial evaluation */
- static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16 */
- opus_int32 *p, /* I Polynomial, Q16 */
- const opus_int32 x, /* I Evaluation point, Q12 */
- const opus_int dd /* I Order */
- )
- {
- opus_int n;
- opus_int32 x_Q16, y32;
- y32 = p[ dd ]; /* Q16 */
- x_Q16 = silk_LSHIFT( x, 4 );
- if ( opus_likely( 8 == dd ) )
- {
- y32 = silk_SMLAWW( p[ 7 ], y32, x_Q16 );
- y32 = silk_SMLAWW( p[ 6 ], y32, x_Q16 );
- y32 = silk_SMLAWW( p[ 5 ], y32, x_Q16 );
- y32 = silk_SMLAWW( p[ 4 ], y32, x_Q16 );
- y32 = silk_SMLAWW( p[ 3 ], y32, x_Q16 );
- y32 = silk_SMLAWW( p[ 2 ], y32, x_Q16 );
- y32 = silk_SMLAWW( p[ 1 ], y32, x_Q16 );
- y32 = silk_SMLAWW( p[ 0 ], y32, x_Q16 );
- }
- else
- {
- for( n = dd - 1; n >= 0; n-- ) {
- y32 = silk_SMLAWW( p[ n ], y32, x_Q16 ); /* Q16 */
- }
- }
- return y32;
- }
- static OPUS_INLINE void silk_A2NLSF_init(
- const opus_int32 *a_Q16,
- opus_int32 *P,
- opus_int32 *Q,
- const opus_int dd
- )
- {
- opus_int k;
- /* Convert filter coefs to even and odd polynomials */
- P[dd] = silk_LSHIFT( 1, 16 );
- Q[dd] = silk_LSHIFT( 1, 16 );
- for( k = 0; k < dd; k++ ) {
- P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ]; /* Q16 */
- Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ]; /* Q16 */
- }
- /* Divide out zeros as we have that for even filter orders, */
- /* z = 1 is always a root in Q, and */
- /* z = -1 is always a root in P */
- for( k = dd; k > 0; k-- ) {
- P[ k - 1 ] -= P[ k ];
- Q[ k - 1 ] += Q[ k ];
- }
- /* Transform polynomials from cos(n*f) to cos(f)^n */
- silk_A2NLSF_trans_poly( P, dd );
- silk_A2NLSF_trans_poly( Q, dd );
- }
- /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
- /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
- void silk_A2NLSF(
- opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
- opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
- const opus_int d /* I Filter order (must be even) */
- )
- {
- opus_int i, k, m, dd, root_ix, ffrac;
- opus_int32 xlo, xhi, xmid;
- opus_int32 ylo, yhi, ymid, thr;
- opus_int32 nom, den;
- opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
- opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
- opus_int32 *PQ[ 2 ];
- opus_int32 *p;
- /* Store pointers to array */
- PQ[ 0 ] = P;
- PQ[ 1 ] = Q;
- dd = silk_RSHIFT( d, 1 );
- silk_A2NLSF_init( a_Q16, P, Q, dd );
- /* Find roots, alternating between P and Q */
- p = P; /* Pointer to polynomial */
- xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
- ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
- if( ylo < 0 ) {
- /* Set the first NLSF to zero and move on to the next */
- NLSF[ 0 ] = 0;
- p = Q; /* Pointer to polynomial */
- ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
- root_ix = 1; /* Index of current root */
- } else {
- root_ix = 0; /* Index of current root */
- }
- k = 1; /* Loop counter */
- i = 0; /* Counter for bandwidth expansions applied */
- thr = 0;
- while( 1 ) {
- /* Evaluate polynomial */
- xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
- yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
- /* Detect zero crossing */
- if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
- if( yhi == 0 ) {
- /* If the root lies exactly at the end of the current */
- /* interval, look for the next root in the next interval */
- thr = 1;
- } else {
- thr = 0;
- }
- /* Binary division */
- ffrac = -256;
- for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
- /* Evaluate polynomial */
- xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
- ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
- /* Detect zero crossing */
- if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
- /* Reduce frequency */
- xhi = xmid;
- yhi = ymid;
- } else {
- /* Increase frequency */
- xlo = xmid;
- ylo = ymid;
- ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
- }
- }
- /* Interpolate */
- if( silk_abs( ylo ) < 65536 ) {
- /* Avoid dividing by zero */
- den = ylo - yhi;
- nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
- if( den != 0 ) {
- ffrac += silk_DIV32( nom, den );
- }
- } else {
- /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
- ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
- }
- NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
- silk_assert( NLSF[ root_ix ] >= 0 );
- root_ix++; /* Next root */
- if( root_ix >= d ) {
- /* Found all roots */
- break;
- }
- /* Alternate pointer to polynomial */
- p = PQ[ root_ix & 1 ];
- /* Evaluate polynomial */
- xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
- ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
- } else {
- /* Increment loop counter */
- k++;
- xlo = xhi;
- ylo = yhi;
- thr = 0;
- if( k > LSF_COS_TAB_SZ_FIX ) {
- i++;
- if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
- /* Set NLSFs to white spectrum and exit */
- NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
- for( k = 1; k < d; k++ ) {
- NLSF[ k ] = (opus_int16)silk_SMULBB( k + 1, NLSF[ 0 ] );
- }
- return;
- }
- /* Error: Apply progressively more bandwidth expansion and run again */
- silk_bwexpander_32( a_Q16, d, 65536 - silk_SMULBB( 10 + i, i ) ); /* 10_Q16 = 0.00015*/
- silk_A2NLSF_init( a_Q16, P, Q, dd );
- p = P; /* Pointer to polynomial */
- xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
- ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
- if( ylo < 0 ) {
- /* Set the first NLSF to zero and move on to the next */
- NLSF[ 0 ] = 0;
- p = Q; /* Pointer to polynomial */
- ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
- root_ix = 1; /* Index of current root */
- } else {
- root_ix = 0; /* Index of current root */
- }
- k = 1; /* Reset loop counter */
- }
- }
- }
- }
|