mathops.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. /* Copyright (c) 2002-2008 Jean-Marc Valin
  2. Copyright (c) 2007-2008 CSIRO
  3. Copyright (c) 2007-2009 Xiph.Org Foundation
  4. Written by Jean-Marc Valin */
  5. /**
  6. @file mathops.h
  7. @brief Various math functions
  8. */
  9. /*
  10. Redistribution and use in source and binary forms, with or without
  11. modification, are permitted provided that the following conditions
  12. are met:
  13. - Redistributions of source code must retain the above copyright
  14. notice, this list of conditions and the following disclaimer.
  15. - Redistributions in binary form must reproduce the above copyright
  16. notice, this list of conditions and the following disclaimer in the
  17. documentation and/or other materials provided with the distribution.
  18. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
  22. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  23. EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  24. PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  25. PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  26. LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  27. NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28. SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. */
  30. #ifdef HAVE_CONFIG_H
  31. #include "config.h"
  32. #endif
  33. #include "mathops.h"
  34. /*Compute floor(sqrt(_val)) with exact arithmetic.
  35. This has been tested on all possible 32-bit inputs.*/
  36. unsigned isqrt32(opus_uint32 _val){
  37. unsigned b;
  38. unsigned g;
  39. int bshift;
  40. /*Uses the second method from
  41. http://www.azillionmonkeys.com/qed/sqroot.html
  42. The main idea is to search for the largest binary digit b such that
  43. (g+b)*(g+b) <= _val, and add it to the solution g.*/
  44. g=0;
  45. bshift=(EC_ILOG(_val)-1)>>1;
  46. b=1U<<bshift;
  47. do{
  48. opus_uint32 t;
  49. t=(((opus_uint32)g<<1)+b)<<bshift;
  50. if(t<=_val){
  51. g+=b;
  52. _val-=t;
  53. }
  54. b>>=1;
  55. bshift--;
  56. }
  57. while(bshift>=0);
  58. return g;
  59. }
  60. #ifdef FIXED_POINT
  61. opus_val32 frac_div32(opus_val32 a, opus_val32 b)
  62. {
  63. opus_val16 rcp;
  64. opus_val32 result, rem;
  65. int shift = celt_ilog2(b)-29;
  66. a = VSHR32(a,shift);
  67. b = VSHR32(b,shift);
  68. /* 16-bit reciprocal */
  69. rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
  70. result = MULT16_32_Q15(rcp, a);
  71. rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
  72. result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
  73. if (result >= 536870912) /* 2^29 */
  74. return 2147483647; /* 2^31 - 1 */
  75. else if (result <= -536870912) /* -2^29 */
  76. return -2147483647; /* -2^31 */
  77. else
  78. return SHL32(result, 2);
  79. }
  80. /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
  81. opus_val16 celt_rsqrt_norm(opus_val32 x)
  82. {
  83. opus_val16 n;
  84. opus_val16 r;
  85. opus_val16 r2;
  86. opus_val16 y;
  87. /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
  88. n = x-32768;
  89. /* Get a rough initial guess for the root.
  90. The optimal minimax quadratic approximation (using relative error) is
  91. r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
  92. Coefficients here, and the final result r, are Q14.*/
  93. r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
  94. /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
  95. We can compute the result from n and r using Q15 multiplies with some
  96. adjustment, carefully done to avoid overflow.
  97. Range of y is [-1564,1594]. */
  98. r2 = MULT16_16_Q15(r, r);
  99. y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
  100. /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
  101. This yields the Q14 reciprocal square root of the Q16 x, with a maximum
  102. relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
  103. peak absolute error of 2.26591/16384. */
  104. return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
  105. SUB16(MULT16_16_Q15(y, 12288), 16384))));
  106. }
  107. /** Sqrt approximation (QX input, QX/2 output) */
  108. opus_val32 celt_sqrt(opus_val32 x)
  109. {
  110. int k;
  111. opus_val16 n;
  112. opus_val32 rt;
  113. static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
  114. if (x==0)
  115. return 0;
  116. else if (x>=1073741824)
  117. return 32767;
  118. k = (celt_ilog2(x)>>1)-7;
  119. x = VSHR32(x, 2*k);
  120. n = x-32768;
  121. rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
  122. MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
  123. rt = VSHR32(rt,7-k);
  124. return rt;
  125. }
  126. #define L1 32767
  127. #define L2 -7651
  128. #define L3 8277
  129. #define L4 -626
  130. static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
  131. {
  132. opus_val16 x2;
  133. x2 = MULT16_16_P15(x,x);
  134. return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
  135. ))))))));
  136. }
  137. #undef L1
  138. #undef L2
  139. #undef L3
  140. #undef L4
  141. opus_val16 celt_cos_norm(opus_val32 x)
  142. {
  143. x = x&0x0001ffff;
  144. if (x>SHL32(EXTEND32(1), 16))
  145. x = SUB32(SHL32(EXTEND32(1), 17),x);
  146. if (x&0x00007fff)
  147. {
  148. if (x<SHL32(EXTEND32(1), 15))
  149. {
  150. return _celt_cos_pi_2(EXTRACT16(x));
  151. } else {
  152. return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
  153. }
  154. } else {
  155. if (x&0x0000ffff)
  156. return 0;
  157. else if (x&0x0001ffff)
  158. return -32767;
  159. else
  160. return 32767;
  161. }
  162. }
  163. /** Reciprocal approximation (Q15 input, Q16 output) */
  164. opus_val32 celt_rcp(opus_val32 x)
  165. {
  166. int i;
  167. opus_val16 n;
  168. opus_val16 r;
  169. celt_assert2(x>0, "celt_rcp() only defined for positive values");
  170. i = celt_ilog2(x);
  171. /* n is Q15 with range [0,1). */
  172. n = VSHR32(x,i-15)-32768;
  173. /* Start with a linear approximation:
  174. r = 1.8823529411764706-0.9411764705882353*n.
  175. The coefficients and the result are Q14 in the range [15420,30840].*/
  176. r = ADD16(30840, MULT16_16_Q15(-15420, n));
  177. /* Perform two Newton iterations:
  178. r -= r*((r*n)-1.Q15)
  179. = r*((r*n)+(r-1.Q15)). */
  180. r = SUB16(r, MULT16_16_Q15(r,
  181. ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
  182. /* We subtract an extra 1 in the second iteration to avoid overflow; it also
  183. neatly compensates for truncation error in the rest of the process. */
  184. r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
  185. ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
  186. /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
  187. of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
  188. error of 1.24665/32768. */
  189. return VSHR32(EXTEND32(r),i-16);
  190. }
  191. #endif