123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821 |
- /* ssl/s3_cbc.c */
- /* ====================================================================
- * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- #include "../crypto/constant_time_locl.h"
- #include "ssl_locl.h"
- #include <openssl/md5.h>
- #include <openssl/sha.h>
- /*
- * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
- * length field. (SHA-384/512 have 128-bit length.)
- */
- #define MAX_HASH_BIT_COUNT_BYTES 16
- /*
- * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
- * Currently SHA-384/512 has a 128-byte block size and that's the largest
- * supported by TLS.)
- */
- #define MAX_HASH_BLOCK_SIZE 128
- /*-
- * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
- * record in |rec| by updating |rec->length| in constant time.
- *
- * block_size: the block size of the cipher used to encrypt the record.
- * returns:
- * 0: (in non-constant time) if the record is publicly invalid.
- * 1: if the padding was valid
- * -1: otherwise.
- */
- int ssl3_cbc_remove_padding(const SSL *s,
- SSL3_RECORD *rec,
- unsigned block_size, unsigned mac_size)
- {
- unsigned padding_length, good;
- const unsigned overhead = 1 /* padding length byte */ + mac_size;
- /*
- * These lengths are all public so we can test them in non-constant time.
- */
- if (overhead > rec->length)
- return 0;
- padding_length = rec->data[rec->length - 1];
- good = constant_time_ge(rec->length, padding_length + overhead);
- /* SSLv3 requires that the padding is minimal. */
- good &= constant_time_ge(block_size, padding_length + 1);
- padding_length = good & (padding_length + 1);
- rec->length -= padding_length;
- rec->type |= padding_length << 8; /* kludge: pass padding length */
- return constant_time_select_int(good, 1, -1);
- }
- /*-
- * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
- * record in |rec| in constant time and returns 1 if the padding is valid and
- * -1 otherwise. It also removes any explicit IV from the start of the record
- * without leaking any timing about whether there was enough space after the
- * padding was removed.
- *
- * block_size: the block size of the cipher used to encrypt the record.
- * returns:
- * 0: (in non-constant time) if the record is publicly invalid.
- * 1: if the padding was valid
- * -1: otherwise.
- */
- int tls1_cbc_remove_padding(const SSL *s,
- SSL3_RECORD *rec,
- unsigned block_size, unsigned mac_size)
- {
- unsigned padding_length, good, to_check, i;
- const unsigned overhead = 1 /* padding length byte */ + mac_size;
- /* Check if version requires explicit IV */
- if (SSL_USE_EXPLICIT_IV(s)) {
- /*
- * These lengths are all public so we can test them in non-constant
- * time.
- */
- if (overhead + block_size > rec->length)
- return 0;
- /* We can now safely skip explicit IV */
- rec->data += block_size;
- rec->input += block_size;
- rec->length -= block_size;
- } else if (overhead > rec->length)
- return 0;
- padding_length = rec->data[rec->length - 1];
- /*
- * NB: if compression is in operation the first packet may not be of even
- * length so the padding bug check cannot be performed. This bug
- * workaround has been around since SSLeay so hopefully it is either
- * fixed now or no buggy implementation supports compression [steve]
- */
- if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) {
- /* First packet is even in size, so check */
- if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) &&
- !(padding_length & 1)) {
- s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG;
- }
- if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) {
- padding_length--;
- }
- }
- if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
- /* padding is already verified */
- rec->length -= padding_length + 1;
- return 1;
- }
- good = constant_time_ge(rec->length, overhead + padding_length);
- /*
- * The padding consists of a length byte at the end of the record and
- * then that many bytes of padding, all with the same value as the length
- * byte. Thus, with the length byte included, there are i+1 bytes of
- * padding. We can't check just |padding_length+1| bytes because that
- * leaks decrypted information. Therefore we always have to check the
- * maximum amount of padding possible. (Again, the length of the record
- * is public information so we can use it.)
- */
- to_check = 255; /* maximum amount of padding. */
- if (to_check > rec->length - 1)
- to_check = rec->length - 1;
- for (i = 0; i < to_check; i++) {
- unsigned char mask = constant_time_ge_8(padding_length, i);
- unsigned char b = rec->data[rec->length - 1 - i];
- /*
- * The final |padding_length+1| bytes should all have the value
- * |padding_length|. Therefore the XOR should be zero.
- */
- good &= ~(mask & (padding_length ^ b));
- }
- /*
- * If any of the final |padding_length+1| bytes had the wrong value, one
- * or more of the lower eight bits of |good| will be cleared.
- */
- good = constant_time_eq(0xff, good & 0xff);
- padding_length = good & (padding_length + 1);
- rec->length -= padding_length;
- rec->type |= padding_length << 8; /* kludge: pass padding length */
- return constant_time_select_int(good, 1, -1);
- }
- /*-
- * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
- * constant time (independent of the concrete value of rec->length, which may
- * vary within a 256-byte window).
- *
- * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
- * this function.
- *
- * On entry:
- * rec->orig_len >= md_size
- * md_size <= EVP_MAX_MD_SIZE
- *
- * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
- * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
- * a single or pair of cache-lines, then the variable memory accesses don't
- * actually affect the timing. CPUs with smaller cache-lines [if any] are
- * not multi-core and are not considered vulnerable to cache-timing attacks.
- */
- #define CBC_MAC_ROTATE_IN_PLACE
- void ssl3_cbc_copy_mac(unsigned char *out,
- const SSL3_RECORD *rec,
- unsigned md_size, unsigned orig_len)
- {
- #if defined(CBC_MAC_ROTATE_IN_PLACE)
- unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
- unsigned char *rotated_mac;
- #else
- unsigned char rotated_mac[EVP_MAX_MD_SIZE];
- #endif
- /*
- * mac_end is the index of |rec->data| just after the end of the MAC.
- */
- unsigned mac_end = rec->length;
- unsigned mac_start = mac_end - md_size;
- /*
- * scan_start contains the number of bytes that we can ignore because the
- * MAC's position can only vary by 255 bytes.
- */
- unsigned scan_start = 0;
- unsigned i, j;
- unsigned div_spoiler;
- unsigned rotate_offset;
- OPENSSL_assert(orig_len >= md_size);
- OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
- #if defined(CBC_MAC_ROTATE_IN_PLACE)
- rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
- #endif
- /* This information is public so it's safe to branch based on it. */
- if (orig_len > md_size + 255 + 1)
- scan_start = orig_len - (md_size + 255 + 1);
- /*
- * div_spoiler contains a multiple of md_size that is used to cause the
- * modulo operation to be constant time. Without this, the time varies
- * based on the amount of padding when running on Intel chips at least.
- * The aim of right-shifting md_size is so that the compiler doesn't
- * figure out that it can remove div_spoiler as that would require it to
- * prove that md_size is always even, which I hope is beyond it.
- */
- div_spoiler = md_size >> 1;
- div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
- rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
- memset(rotated_mac, 0, md_size);
- for (i = scan_start, j = 0; i < orig_len; i++) {
- unsigned char mac_started = constant_time_ge_8(i, mac_start);
- unsigned char mac_ended = constant_time_ge_8(i, mac_end);
- unsigned char b = rec->data[i];
- rotated_mac[j++] |= b & mac_started & ~mac_ended;
- j &= constant_time_lt(j, md_size);
- }
- /* Now rotate the MAC */
- #if defined(CBC_MAC_ROTATE_IN_PLACE)
- j = 0;
- for (i = 0; i < md_size; i++) {
- /* in case cache-line is 32 bytes, touch second line */
- ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
- out[j++] = rotated_mac[rotate_offset++];
- rotate_offset &= constant_time_lt(rotate_offset, md_size);
- }
- #else
- memset(out, 0, md_size);
- rotate_offset = md_size - rotate_offset;
- rotate_offset &= constant_time_lt(rotate_offset, md_size);
- for (i = 0; i < md_size; i++) {
- for (j = 0; j < md_size; j++)
- out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
- rotate_offset++;
- rotate_offset &= constant_time_lt(rotate_offset, md_size);
- }
- #endif
- }
- /*
- * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
- * little-endian order. The value of p is advanced by four.
- */
- #define u32toLE(n, p) \
- (*((p)++)=(unsigned char)(n), \
- *((p)++)=(unsigned char)(n>>8), \
- *((p)++)=(unsigned char)(n>>16), \
- *((p)++)=(unsigned char)(n>>24))
- /*
- * These functions serialize the state of a hash and thus perform the
- * standard "final" operation without adding the padding and length that such
- * a function typically does.
- */
- static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
- {
- MD5_CTX *md5 = ctx;
- u32toLE(md5->A, md_out);
- u32toLE(md5->B, md_out);
- u32toLE(md5->C, md_out);
- u32toLE(md5->D, md_out);
- }
- static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
- {
- SHA_CTX *sha1 = ctx;
- l2n(sha1->h0, md_out);
- l2n(sha1->h1, md_out);
- l2n(sha1->h2, md_out);
- l2n(sha1->h3, md_out);
- l2n(sha1->h4, md_out);
- }
- #define LARGEST_DIGEST_CTX SHA_CTX
- #ifndef OPENSSL_NO_SHA256
- static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
- {
- SHA256_CTX *sha256 = ctx;
- unsigned i;
- for (i = 0; i < 8; i++) {
- l2n(sha256->h[i], md_out);
- }
- }
- # undef LARGEST_DIGEST_CTX
- # define LARGEST_DIGEST_CTX SHA256_CTX
- #endif
- #ifndef OPENSSL_NO_SHA512
- static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
- {
- SHA512_CTX *sha512 = ctx;
- unsigned i;
- for (i = 0; i < 8; i++) {
- l2n8(sha512->h[i], md_out);
- }
- }
- # undef LARGEST_DIGEST_CTX
- # define LARGEST_DIGEST_CTX SHA512_CTX
- #endif
- /*
- * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
- * which ssl3_cbc_digest_record supports.
- */
- char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
- {
- #ifdef OPENSSL_FIPS
- if (FIPS_mode())
- return 0;
- #endif
- switch (EVP_MD_CTX_type(ctx)) {
- case NID_md5:
- case NID_sha1:
- #ifndef OPENSSL_NO_SHA256
- case NID_sha224:
- case NID_sha256:
- #endif
- #ifndef OPENSSL_NO_SHA512
- case NID_sha384:
- case NID_sha512:
- #endif
- return 1;
- default:
- return 0;
- }
- }
- /*-
- * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
- * record.
- *
- * ctx: the EVP_MD_CTX from which we take the hash function.
- * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
- * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
- * md_out_size: if non-NULL, the number of output bytes is written here.
- * header: the 13-byte, TLS record header.
- * data: the record data itself, less any preceeding explicit IV.
- * data_plus_mac_size: the secret, reported length of the data and MAC
- * once the padding has been removed.
- * data_plus_mac_plus_padding_size: the public length of the whole
- * record, including padding.
- * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
- *
- * On entry: by virtue of having been through one of the remove_padding
- * functions, above, we know that data_plus_mac_size is large enough to contain
- * a padding byte and MAC. (If the padding was invalid, it might contain the
- * padding too. )
- * Returns 1 on success or 0 on error
- */
- int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
- unsigned char *md_out,
- size_t *md_out_size,
- const unsigned char header[13],
- const unsigned char *data,
- size_t data_plus_mac_size,
- size_t data_plus_mac_plus_padding_size,
- const unsigned char *mac_secret,
- unsigned mac_secret_length, char is_sslv3)
- {
- union {
- double align;
- unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
- } md_state;
- void (*md_final_raw) (void *ctx, unsigned char *md_out);
- void (*md_transform) (void *ctx, const unsigned char *block);
- unsigned md_size, md_block_size = 64;
- unsigned sslv3_pad_length = 40, header_length, variance_blocks,
- len, max_mac_bytes, num_blocks,
- num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
- unsigned int bits; /* at most 18 bits */
- unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
- /* hmac_pad is the masked HMAC key. */
- unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
- unsigned char first_block[MAX_HASH_BLOCK_SIZE];
- unsigned char mac_out[EVP_MAX_MD_SIZE];
- unsigned i, j, md_out_size_u;
- EVP_MD_CTX md_ctx;
- /*
- * mdLengthSize is the number of bytes in the length field that
- * terminates * the hash.
- */
- unsigned md_length_size = 8;
- char length_is_big_endian = 1;
- /*
- * This is a, hopefully redundant, check that allows us to forget about
- * many possible overflows later in this function.
- */
- OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
- switch (EVP_MD_CTX_type(ctx)) {
- case NID_md5:
- if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
- return 0;
- md_final_raw = tls1_md5_final_raw;
- md_transform =
- (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
- md_size = 16;
- sslv3_pad_length = 48;
- length_is_big_endian = 0;
- break;
- case NID_sha1:
- if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
- return 0;
- md_final_raw = tls1_sha1_final_raw;
- md_transform =
- (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
- md_size = 20;
- break;
- #ifndef OPENSSL_NO_SHA256
- case NID_sha224:
- if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
- return 0;
- md_final_raw = tls1_sha256_final_raw;
- md_transform =
- (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
- md_size = 224 / 8;
- break;
- case NID_sha256:
- if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
- return 0;
- md_final_raw = tls1_sha256_final_raw;
- md_transform =
- (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
- md_size = 32;
- break;
- #endif
- #ifndef OPENSSL_NO_SHA512
- case NID_sha384:
- if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
- return 0;
- md_final_raw = tls1_sha512_final_raw;
- md_transform =
- (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
- md_size = 384 / 8;
- md_block_size = 128;
- md_length_size = 16;
- break;
- case NID_sha512:
- if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
- return 0;
- md_final_raw = tls1_sha512_final_raw;
- md_transform =
- (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
- md_size = 64;
- md_block_size = 128;
- md_length_size = 16;
- break;
- #endif
- default:
- /*
- * ssl3_cbc_record_digest_supported should have been called first to
- * check that the hash function is supported.
- */
- OPENSSL_assert(0);
- if (md_out_size)
- *md_out_size = 0;
- return 0;
- }
- OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
- OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
- OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
- header_length = 13;
- if (is_sslv3) {
- header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
- * number */ +
- 1 /* record type */ +
- 2 /* record length */ ;
- }
- /*
- * variance_blocks is the number of blocks of the hash that we have to
- * calculate in constant time because they could be altered by the
- * padding value. In SSLv3, the padding must be minimal so the end of
- * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
- * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
- * of hash termination (0x80 + 64-bit length) don't fit in the final
- * block, we say that the final two blocks can vary based on the padding.
- * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
- * required to be minimal. Therefore we say that the final six blocks can
- * vary based on the padding. Later in the function, if the message is
- * short and there obviously cannot be this many blocks then
- * variance_blocks can be reduced.
- */
- variance_blocks = is_sslv3 ? 2 : 6;
- /*
- * From now on we're dealing with the MAC, which conceptually has 13
- * bytes of `header' before the start of the data (TLS) or 71/75 bytes
- * (SSLv3)
- */
- len = data_plus_mac_plus_padding_size + header_length;
- /*
- * max_mac_bytes contains the maximum bytes of bytes in the MAC,
- * including * |header|, assuming that there's no padding.
- */
- max_mac_bytes = len - md_size - 1;
- /* num_blocks is the maximum number of hash blocks. */
- num_blocks =
- (max_mac_bytes + 1 + md_length_size + md_block_size -
- 1) / md_block_size;
- /*
- * In order to calculate the MAC in constant time we have to handle the
- * final blocks specially because the padding value could cause the end
- * to appear somewhere in the final |variance_blocks| blocks and we can't
- * leak where. However, |num_starting_blocks| worth of data can be hashed
- * right away because no padding value can affect whether they are
- * plaintext.
- */
- num_starting_blocks = 0;
- /*
- * k is the starting byte offset into the conceptual header||data where
- * we start processing.
- */
- k = 0;
- /*
- * mac_end_offset is the index just past the end of the data to be MACed.
- */
- mac_end_offset = data_plus_mac_size + header_length - md_size;
- /*
- * c is the index of the 0x80 byte in the final hash block that contains
- * application data.
- */
- c = mac_end_offset % md_block_size;
- /*
- * index_a is the hash block number that contains the 0x80 terminating
- * value.
- */
- index_a = mac_end_offset / md_block_size;
- /*
- * index_b is the hash block number that contains the 64-bit hash length,
- * in bits.
- */
- index_b = (mac_end_offset + md_length_size) / md_block_size;
- /*
- * bits is the hash-length in bits. It includes the additional hash block
- * for the masked HMAC key, or whole of |header| in the case of SSLv3.
- */
- /*
- * For SSLv3, if we're going to have any starting blocks then we need at
- * least two because the header is larger than a single block.
- */
- if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
- num_starting_blocks = num_blocks - variance_blocks;
- k = md_block_size * num_starting_blocks;
- }
- bits = 8 * mac_end_offset;
- if (!is_sslv3) {
- /*
- * Compute the initial HMAC block. For SSLv3, the padding and secret
- * bytes are included in |header| because they take more than a
- * single block.
- */
- bits += 8 * md_block_size;
- memset(hmac_pad, 0, md_block_size);
- OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
- memcpy(hmac_pad, mac_secret, mac_secret_length);
- for (i = 0; i < md_block_size; i++)
- hmac_pad[i] ^= 0x36;
- md_transform(md_state.c, hmac_pad);
- }
- if (length_is_big_endian) {
- memset(length_bytes, 0, md_length_size - 4);
- length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
- length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
- length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
- length_bytes[md_length_size - 1] = (unsigned char)bits;
- } else {
- memset(length_bytes, 0, md_length_size);
- length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
- length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
- length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
- length_bytes[md_length_size - 8] = (unsigned char)bits;
- }
- if (k > 0) {
- if (is_sslv3) {
- unsigned overhang;
- /*
- * The SSLv3 header is larger than a single block. overhang is
- * the number of bytes beyond a single block that the header
- * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
- * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
- * therefore we can be confident that the header_length will be
- * greater than |md_block_size|. However we add a sanity check just
- * in case
- */
- if (header_length <= md_block_size) {
- /* Should never happen */
- return 0;
- }
- overhang = header_length - md_block_size;
- md_transform(md_state.c, header);
- memcpy(first_block, header + md_block_size, overhang);
- memcpy(first_block + overhang, data, md_block_size - overhang);
- md_transform(md_state.c, first_block);
- for (i = 1; i < k / md_block_size - 1; i++)
- md_transform(md_state.c, data + md_block_size * i - overhang);
- } else {
- /* k is a multiple of md_block_size. */
- memcpy(first_block, header, 13);
- memcpy(first_block + 13, data, md_block_size - 13);
- md_transform(md_state.c, first_block);
- for (i = 1; i < k / md_block_size; i++)
- md_transform(md_state.c, data + md_block_size * i - 13);
- }
- }
- memset(mac_out, 0, sizeof(mac_out));
- /*
- * We now process the final hash blocks. For each block, we construct it
- * in constant time. If the |i==index_a| then we'll include the 0x80
- * bytes and zero pad etc. For each block we selectively copy it, in
- * constant time, to |mac_out|.
- */
- for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
- i++) {
- unsigned char block[MAX_HASH_BLOCK_SIZE];
- unsigned char is_block_a = constant_time_eq_8(i, index_a);
- unsigned char is_block_b = constant_time_eq_8(i, index_b);
- for (j = 0; j < md_block_size; j++) {
- unsigned char b = 0, is_past_c, is_past_cp1;
- if (k < header_length)
- b = header[k];
- else if (k < data_plus_mac_plus_padding_size + header_length)
- b = data[k - header_length];
- k++;
- is_past_c = is_block_a & constant_time_ge_8(j, c);
- is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
- /*
- * If this is the block containing the end of the application
- * data, and we are at the offset for the 0x80 value, then
- * overwrite b with 0x80.
- */
- b = constant_time_select_8(is_past_c, 0x80, b);
- /*
- * If this the the block containing the end of the application
- * data and we're past the 0x80 value then just write zero.
- */
- b = b & ~is_past_cp1;
- /*
- * If this is index_b (the final block), but not index_a (the end
- * of the data), then the 64-bit length didn't fit into index_a
- * and we're having to add an extra block of zeros.
- */
- b &= ~is_block_b | is_block_a;
- /*
- * The final bytes of one of the blocks contains the length.
- */
- if (j >= md_block_size - md_length_size) {
- /* If this is index_b, write a length byte. */
- b = constant_time_select_8(is_block_b,
- length_bytes[j -
- (md_block_size -
- md_length_size)], b);
- }
- block[j] = b;
- }
- md_transform(md_state.c, block);
- md_final_raw(md_state.c, block);
- /* If this is index_b, copy the hash value to |mac_out|. */
- for (j = 0; j < md_size; j++)
- mac_out[j] |= block[j] & is_block_b;
- }
- EVP_MD_CTX_init(&md_ctx);
- if (EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ ) <= 0)
- goto err;
- if (is_sslv3) {
- /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
- memset(hmac_pad, 0x5c, sslv3_pad_length);
- if (EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length) <= 0
- || EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length) <= 0
- || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
- goto err;
- } else {
- /* Complete the HMAC in the standard manner. */
- for (i = 0; i < md_block_size; i++)
- hmac_pad[i] ^= 0x6a;
- if (EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size) <= 0
- || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
- goto err;
- }
- EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
- if (md_out_size)
- *md_out_size = md_out_size_u;
- EVP_MD_CTX_cleanup(&md_ctx);
- return 1;
- err:
- EVP_MD_CTX_cleanup(&md_ctx);
- return 0;
- }
- #ifdef OPENSSL_FIPS
- /*
- * Due to the need to use EVP in FIPS mode we can't reimplement digests but
- * we can ensure the number of blocks processed is equal for all cases by
- * digesting additional data.
- */
- void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
- EVP_MD_CTX *mac_ctx, const unsigned char *data,
- size_t data_len, size_t orig_len)
- {
- size_t block_size, digest_pad, blocks_data, blocks_orig;
- if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
- return;
- block_size = EVP_MD_CTX_block_size(mac_ctx);
- /*-
- * We are in FIPS mode if we get this far so we know we have only SHA*
- * digests and TLS to deal with.
- * Minimum digest padding length is 17 for SHA384/SHA512 and 9
- * otherwise.
- * Additional header is 13 bytes. To get the number of digest blocks
- * processed round up the amount of data plus padding to the nearest
- * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
- * So we have:
- * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
- * equivalently:
- * blocks = (payload_len + digest_pad + 12)/block_size + 1
- * HMAC adds a constant overhead.
- * We're ultimately only interested in differences so this becomes
- * blocks = (payload_len + 29)/128
- * for SHA384/SHA512 and
- * blocks = (payload_len + 21)/64
- * otherwise.
- */
- digest_pad = block_size == 64 ? 21 : 29;
- blocks_orig = (orig_len + digest_pad) / block_size;
- blocks_data = (data_len + digest_pad) / block_size;
- /*
- * MAC enough blocks to make up the difference between the original and
- * actual lengths plus one extra block to ensure this is never a no op.
- * The "data" pointer should always have enough space to perform this
- * operation as it is large enough for a maximum length TLS buffer.
- */
- EVP_DigestSignUpdate(mac_ctx, data,
- (blocks_orig - blocks_data + 1) * block_size);
- }
- #endif
|