bn_x931p.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. /* bn_x931p.c */
  2. /*
  3. * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
  4. * 2005.
  5. */
  6. /* ====================================================================
  7. * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. *
  13. * 1. Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer.
  15. *
  16. * 2. Redistributions in binary form must reproduce the above copyright
  17. * notice, this list of conditions and the following disclaimer in
  18. * the documentation and/or other materials provided with the
  19. * distribution.
  20. *
  21. * 3. All advertising materials mentioning features or use of this
  22. * software must display the following acknowledgment:
  23. * "This product includes software developed by the OpenSSL Project
  24. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  25. *
  26. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  27. * endorse or promote products derived from this software without
  28. * prior written permission. For written permission, please contact
  29. * licensing@OpenSSL.org.
  30. *
  31. * 5. Products derived from this software may not be called "OpenSSL"
  32. * nor may "OpenSSL" appear in their names without prior written
  33. * permission of the OpenSSL Project.
  34. *
  35. * 6. Redistributions of any form whatsoever must retain the following
  36. * acknowledgment:
  37. * "This product includes software developed by the OpenSSL Project
  38. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  41. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  43. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  44. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  45. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  46. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  49. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  50. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  51. * OF THE POSSIBILITY OF SUCH DAMAGE.
  52. * ====================================================================
  53. *
  54. * This product includes cryptographic software written by Eric Young
  55. * (eay@cryptsoft.com). This product includes software written by Tim
  56. * Hudson (tjh@cryptsoft.com).
  57. *
  58. */
  59. #include <stdio.h>
  60. #include <openssl/bn.h>
  61. /* X9.31 routines for prime derivation */
  62. /*
  63. * X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
  64. * q1, q2) from a parameter Xpi by checking successive odd integers.
  65. */
  66. static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
  67. BN_GENCB *cb)
  68. {
  69. int i = 0;
  70. if (!BN_copy(pi, Xpi))
  71. return 0;
  72. if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
  73. return 0;
  74. for (;;) {
  75. i++;
  76. BN_GENCB_call(cb, 0, i);
  77. /* NB 27 MR is specificed in X9.31 */
  78. if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
  79. break;
  80. if (!BN_add_word(pi, 2))
  81. return 0;
  82. }
  83. BN_GENCB_call(cb, 2, i);
  84. return 1;
  85. }
  86. /*
  87. * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
  88. * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
  89. * will be returned too: this is needed for testing.
  90. */
  91. int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
  92. const BIGNUM *Xp, const BIGNUM *Xp1,
  93. const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
  94. BN_GENCB *cb)
  95. {
  96. int ret = 0;
  97. BIGNUM *t, *p1p2, *pm1;
  98. /* Only even e supported */
  99. if (!BN_is_odd(e))
  100. return 0;
  101. BN_CTX_start(ctx);
  102. if (!p1)
  103. p1 = BN_CTX_get(ctx);
  104. if (!p2)
  105. p2 = BN_CTX_get(ctx);
  106. t = BN_CTX_get(ctx);
  107. p1p2 = BN_CTX_get(ctx);
  108. pm1 = BN_CTX_get(ctx);
  109. if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
  110. goto err;
  111. if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
  112. goto err;
  113. if (!BN_mul(p1p2, p1, p2, ctx))
  114. goto err;
  115. /* First set p to value of Rp */
  116. if (!BN_mod_inverse(p, p2, p1, ctx))
  117. goto err;
  118. if (!BN_mul(p, p, p2, ctx))
  119. goto err;
  120. if (!BN_mod_inverse(t, p1, p2, ctx))
  121. goto err;
  122. if (!BN_mul(t, t, p1, ctx))
  123. goto err;
  124. if (!BN_sub(p, p, t))
  125. goto err;
  126. if (p->neg && !BN_add(p, p, p1p2))
  127. goto err;
  128. /* p now equals Rp */
  129. if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
  130. goto err;
  131. if (!BN_add(p, p, Xp))
  132. goto err;
  133. /* p now equals Yp0 */
  134. for (;;) {
  135. int i = 1;
  136. BN_GENCB_call(cb, 0, i++);
  137. if (!BN_copy(pm1, p))
  138. goto err;
  139. if (!BN_sub_word(pm1, 1))
  140. goto err;
  141. if (!BN_gcd(t, pm1, e, ctx))
  142. goto err;
  143. if (BN_is_one(t)
  144. /*
  145. * X9.31 specifies 8 MR and 1 Lucas test or any prime test
  146. * offering similar or better guarantees 50 MR is considerably
  147. * better.
  148. */
  149. && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
  150. break;
  151. if (!BN_add(p, p, p1p2))
  152. goto err;
  153. }
  154. BN_GENCB_call(cb, 3, 0);
  155. ret = 1;
  156. err:
  157. BN_CTX_end(ctx);
  158. return ret;
  159. }
  160. /*
  161. * Generate pair of paramters Xp, Xq for X9.31 prime generation. Note: nbits
  162. * paramter is sum of number of bits in both.
  163. */
  164. int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
  165. {
  166. BIGNUM *t;
  167. int i;
  168. /*
  169. * Number of bits for each prime is of the form 512+128s for s = 0, 1,
  170. * ...
  171. */
  172. if ((nbits < 1024) || (nbits & 0xff))
  173. return 0;
  174. nbits >>= 1;
  175. /*
  176. * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
  177. * - 1. By setting the top two bits we ensure that the lower bound is
  178. * exceeded.
  179. */
  180. if (!BN_rand(Xp, nbits, 1, 0))
  181. goto err;
  182. BN_CTX_start(ctx);
  183. t = BN_CTX_get(ctx);
  184. for (i = 0; i < 1000; i++) {
  185. if (!BN_rand(Xq, nbits, 1, 0))
  186. goto err;
  187. /* Check that |Xp - Xq| > 2^(nbits - 100) */
  188. BN_sub(t, Xp, Xq);
  189. if (BN_num_bits(t) > (nbits - 100))
  190. break;
  191. }
  192. BN_CTX_end(ctx);
  193. if (i < 1000)
  194. return 1;
  195. return 0;
  196. err:
  197. BN_CTX_end(ctx);
  198. return 0;
  199. }
  200. /*
  201. * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
  202. * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
  203. * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
  204. * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
  205. * previous function and supplied as input.
  206. */
  207. int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
  208. BIGNUM *Xp1, BIGNUM *Xp2,
  209. const BIGNUM *Xp,
  210. const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
  211. {
  212. int ret = 0;
  213. BN_CTX_start(ctx);
  214. if (!Xp1)
  215. Xp1 = BN_CTX_get(ctx);
  216. if (!Xp2)
  217. Xp2 = BN_CTX_get(ctx);
  218. if (!BN_rand(Xp1, 101, 0, 0))
  219. goto error;
  220. if (!BN_rand(Xp2, 101, 0, 0))
  221. goto error;
  222. if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
  223. goto error;
  224. ret = 1;
  225. error:
  226. BN_CTX_end(ctx);
  227. return ret;
  228. }