12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- /********************************************************************
- * *
- * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
- * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
- * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
- * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
- * *
- * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 *
- * by the Xiph.Org Foundation http://www.xiph.org/ *
- * *
- ********************************************************************
- function: linear scale -> dB, Bark and Mel scales
- last mod: $Id: scales.h 16227 2009-07-08 06:58:46Z xiphmont $
- ********************************************************************/
- #ifndef _V_SCALES_H_
- #define _V_SCALES_H_
- #include <math.h>
- #include "os.h"
- #ifdef _MSC_VER
- /* MS Visual Studio doesn't have C99 inline keyword. */
- #define inline __inline
- #endif
- /* 20log10(x) */
- #define VORBIS_IEEE_FLOAT32 1
- #ifdef VORBIS_IEEE_FLOAT32
- static inline float unitnorm(float x){
- union {
- ogg_uint32_t i;
- float f;
- } ix;
- ix.f = x;
- ix.i = (ix.i & 0x80000000U) | (0x3f800000U);
- return ix.f;
- }
- /* Segher was off (too high) by ~ .3 decibel. Center the conversion correctly. */
- static inline float todB(const float *x){
- union {
- ogg_uint32_t i;
- float f;
- } ix;
- ix.f = *x;
- ix.i = ix.i&0x7fffffff;
- return (float)(ix.i * 7.17711438e-7f -764.6161886f);
- }
- #define todB_nn(x) todB(x)
- #else
- static float unitnorm(float x){
- if(x<0)return(-1.f);
- return(1.f);
- }
- #define todB(x) (*(x)==0?-400.f:log(*(x)**(x))*4.34294480f)
- #define todB_nn(x) (*(x)==0.f?-400.f:log(*(x))*8.6858896f)
- #endif
- #define fromdB(x) (exp((x)*.11512925f))
- /* The bark scale equations are approximations, since the original
- table was somewhat hand rolled. The below are chosen to have the
- best possible fit to the rolled tables, thus their somewhat odd
- appearance (these are more accurate and over a longer range than
- the oft-quoted bark equations found in the texts I have). The
- approximations are valid from 0 - 30kHz (nyquist) or so.
- all f in Hz, z in Bark */
- #define toBARK(n) (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n))
- #define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f)
- #define toMEL(n) (log(1.f+(n)*.001f)*1442.695f)
- #define fromMEL(m) (1000.f*exp((m)/1442.695f)-1000.f)
- /* Frequency to octave. We arbitrarily declare 63.5 Hz to be octave
- 0.0 */
- #define toOC(n) (log(n)*1.442695f-5.965784f)
- #define fromOC(o) (exp(((o)+5.965784f)*.693147f))
- #endif
|