123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- /*************************************************************************/
- /* vector3.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "vector3.h"
- #include "matrix3.h"
- void Vector3::rotate(const Vector3 &p_axis, real_t p_phi) {
- *this = Basis(p_axis, p_phi).xform(*this);
- }
- Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_phi) const {
- Vector3 r = *this;
- r.rotate(p_axis, p_phi);
- return r;
- }
- void Vector3::set_axis(int p_axis, real_t p_value) {
- ERR_FAIL_INDEX(p_axis, 3);
- coord[p_axis] = p_value;
- }
- real_t Vector3::get_axis(int p_axis) const {
- ERR_FAIL_INDEX_V(p_axis, 3, 0);
- return operator[](p_axis);
- }
- int Vector3::min_axis() const {
- return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
- }
- int Vector3::max_axis() const {
- return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
- }
- void Vector3::snap(Vector3 p_val) {
- x = Math::stepify(x, p_val.x);
- y = Math::stepify(y, p_val.y);
- z = Math::stepify(z, p_val.z);
- }
- Vector3 Vector3::snapped(Vector3 p_val) const {
- Vector3 v = *this;
- v.snap(p_val);
- return v;
- }
- Vector3 Vector3::cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const {
- Vector3 p0 = p_pre_a;
- Vector3 p1 = *this;
- Vector3 p2 = p_b;
- Vector3 p3 = p_post_b;
- {
- //normalize
- real_t ab = p0.distance_to(p1);
- real_t bc = p1.distance_to(p2);
- real_t cd = p2.distance_to(p3);
- if (ab > 0)
- p0 = p1 + (p0 - p1) * (bc / ab);
- if (cd > 0)
- p3 = p2 + (p3 - p2) * (bc / cd);
- }
- real_t t = p_t;
- real_t t2 = t * t;
- real_t t3 = t2 * t;
- Vector3 out;
- out = 0.5 * ((p1 * 2.0) +
- (-p0 + p2) * t +
- (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
- (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
- return out;
- }
- Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const {
- Vector3 p0 = p_pre_a;
- Vector3 p1 = *this;
- Vector3 p2 = p_b;
- Vector3 p3 = p_post_b;
- real_t t = p_t;
- real_t t2 = t * t;
- real_t t3 = t2 * t;
- Vector3 out;
- out = 0.5 * ((p1 * 2.0) +
- (-p0 + p2) * t +
- (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
- (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
- return out;
- }
- Vector3::operator String() const {
- return (rtos(x) + ", " + rtos(y) + ", " + rtos(z));
- }
|