123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747 |
- /*************************************************************************/
- /* matrix3.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "matrix3.h"
- #include "math_funcs.h"
- #include "os/copymem.h"
- #include "print_string.h"
- #define cofac(row1, col1, row2, col2) \
- (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
- void Basis::from_z(const Vector3 &p_z) {
- if (Math::abs(p_z.z) > Math_SQRT12) {
- // choose p in y-z plane
- real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
- real_t k = 1.0 / Math::sqrt(a);
- elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
- elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
- } else {
- // choose p in x-y plane
- real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
- real_t k = 1.0 / Math::sqrt(a);
- elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
- elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
- }
- elements[2] = p_z;
- }
- void Basis::invert() {
- real_t co[3] = {
- cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
- };
- real_t det = elements[0][0] * co[0] +
- elements[0][1] * co[1] +
- elements[0][2] * co[2];
- #ifdef MATH_CHECKS
- ERR_FAIL_COND(det == 0);
- #endif
- real_t s = 1.0 / det;
- set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
- co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
- co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
- }
- void Basis::orthonormalize() {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND(determinant() == 0);
- #endif
- // Gram-Schmidt Process
- Vector3 x = get_axis(0);
- Vector3 y = get_axis(1);
- Vector3 z = get_axis(2);
- x.normalize();
- y = (y - x * (x.dot(y)));
- y.normalize();
- z = (z - x * (x.dot(z)) - y * (y.dot(z)));
- z.normalize();
- set_axis(0, x);
- set_axis(1, y);
- set_axis(2, z);
- }
- Basis Basis::orthonormalized() const {
- Basis c = *this;
- c.orthonormalize();
- return c;
- }
- bool Basis::is_orthogonal() const {
- Basis id;
- Basis m = (*this) * transposed();
- return is_equal_approx(id, m);
- }
- bool Basis::is_diagonal() const {
- return (
- Math::is_equal_approx(elements[0][1], 0) && Math::is_equal_approx(elements[0][2], 0) &&
- Math::is_equal_approx(elements[1][0], 0) && Math::is_equal_approx(elements[1][2], 0) &&
- Math::is_equal_approx(elements[2][0], 0) && Math::is_equal_approx(elements[2][1], 0));
- }
- bool Basis::is_rotation() const {
- return Math::is_equal_approx(determinant(), 1) && is_orthogonal();
- }
- bool Basis::is_symmetric() const {
- if (!Math::is_equal_approx(elements[0][1], elements[1][0]))
- return false;
- if (!Math::is_equal_approx(elements[0][2], elements[2][0]))
- return false;
- if (!Math::is_equal_approx(elements[1][2], elements[2][1]))
- return false;
- return true;
- }
- Basis Basis::diagonalize() {
- //NOTE: only implemented for symmetric matrices
- //with the Jacobi iterative method method
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_symmetric(), Basis());
- #endif
- const int ite_max = 1024;
- real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
- int ite = 0;
- Basis acc_rot;
- while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
- real_t el01_2 = elements[0][1] * elements[0][1];
- real_t el02_2 = elements[0][2] * elements[0][2];
- real_t el12_2 = elements[1][2] * elements[1][2];
- // Find the pivot element
- int i, j;
- if (el01_2 > el02_2) {
- if (el12_2 > el01_2) {
- i = 1;
- j = 2;
- } else {
- i = 0;
- j = 1;
- }
- } else {
- if (el12_2 > el02_2) {
- i = 1;
- j = 2;
- } else {
- i = 0;
- j = 2;
- }
- }
- // Compute the rotation angle
- real_t angle;
- if (Math::is_equal_approx(elements[j][j], elements[i][i])) {
- angle = Math_PI / 4;
- } else {
- angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
- }
- // Compute the rotation matrix
- Basis rot;
- rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
- rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle));
- // Update the off matrix norm
- off_matrix_norm_2 -= elements[i][j] * elements[i][j];
- // Apply the rotation
- *this = rot * *this * rot.transposed();
- acc_rot = rot * acc_rot;
- }
- return acc_rot;
- }
- Basis Basis::inverse() const {
- Basis inv = *this;
- inv.invert();
- return inv;
- }
- void Basis::transpose() {
- SWAP(elements[0][1], elements[1][0]);
- SWAP(elements[0][2], elements[2][0]);
- SWAP(elements[1][2], elements[2][1]);
- }
- Basis Basis::transposed() const {
- Basis tr = *this;
- tr.transpose();
- return tr;
- }
- // Multiplies the matrix from left by the scaling matrix: M -> S.M
- // See the comment for Basis::rotated for further explanation.
- void Basis::scale(const Vector3 &p_scale) {
- elements[0][0] *= p_scale.x;
- elements[0][1] *= p_scale.x;
- elements[0][2] *= p_scale.x;
- elements[1][0] *= p_scale.y;
- elements[1][1] *= p_scale.y;
- elements[1][2] *= p_scale.y;
- elements[2][0] *= p_scale.z;
- elements[2][1] *= p_scale.z;
- elements[2][2] *= p_scale.z;
- }
- Basis Basis::scaled(const Vector3 &p_scale) const {
- Basis m = *this;
- m.scale(p_scale);
- return m;
- }
- void Basis::set_scale(const Vector3 &p_scale) {
- set_axis(0, get_axis(0).normalized() * p_scale.x);
- set_axis(1, get_axis(1).normalized() * p_scale.y);
- set_axis(2, get_axis(2).normalized() * p_scale.z);
- }
- Vector3 Basis::get_scale() const {
- return Vector3(
- Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
- Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
- Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
- }
- Vector3 Basis::get_signed_scale() const {
- // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
- // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
- // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
- //
- // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
- // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
- // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
- // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
- // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
- // Therefore, we are going to do this decomposition by sticking to a particular convention.
- // This may lead to confusion for some users though.
- //
- // The convention we use here is to absorb the sign flip into the scaling matrix.
- // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
- //
- // A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
- // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
- // matrix elements.
- //
- // The rotation part of this decomposition is returned by get_rotation* functions.
- real_t det_sign = determinant() > 0 ? 1 : -1;
- return det_sign * Vector3(
- Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
- Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
- Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
- }
- // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
- // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
- // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
- Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(determinant() == 0, Vector3());
- Basis m = transposed() * (*this);
- ERR_FAIL_COND_V(m.is_diagonal() == false, Vector3());
- #endif
- Vector3 scale = get_scale();
- Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
- rotref = (*this) * inv_scale;
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(rotref.is_orthogonal() == false, Vector3());
- #endif
- return scale.abs();
- }
- // Multiplies the matrix from left by the rotation matrix: M -> R.M
- // Note that this does *not* rotate the matrix itself.
- //
- // The main use of Basis is as Transform.basis, which is used a the transformation matrix
- // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
- // not the matrix itself (which is R * (*this) * R.transposed()).
- Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
- return Basis(p_axis, p_phi) * (*this);
- }
- void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
- *this = rotated(p_axis, p_phi);
- }
- Basis Basis::rotated(const Vector3 &p_euler) const {
- return Basis(p_euler) * (*this);
- }
- void Basis::rotate(const Vector3 &p_euler) {
- *this = rotated(p_euler);
- }
- // TODO: rename this to get_rotation_euler
- Vector3 Basis::get_rotation() const {
- // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
- // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
- // See the comment in get_scale() for further information.
- Basis m = orthonormalized();
- real_t det = m.determinant();
- if (det < 0) {
- // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
- m.scale(Vector3(-1, -1, -1));
- }
- return m.get_euler();
- }
- void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
- // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
- // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
- // See the comment in get_scale() for further information.
- Basis m = orthonormalized();
- real_t det = m.determinant();
- if (det < 0) {
- // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
- m.scale(Vector3(-1, -1, -1));
- }
- m.get_axis_angle(p_axis, p_angle);
- }
- // get_euler_xyz returns a vector containing the Euler angles in the format
- // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
- // (following the convention they are commonly defined in the literature).
- //
- // The current implementation uses XYZ convention (Z is the first rotation),
- // so euler.z is the angle of the (first) rotation around Z axis and so on,
- //
- // And thus, assuming the matrix is a rotation matrix, this function returns
- // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
- // around the z-axis by a and so on.
- Vector3 Basis::get_euler_xyz() const {
- // Euler angles in XYZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
- Vector3 euler;
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(is_rotation() == false, euler);
- #endif
- real_t sy = elements[0][2];
- if (sy < 1.0) {
- if (sy > -1.0) {
- // is this a pure Y rotation?
- if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = 0;
- euler.y = atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
- } else {
- euler.x = Math::atan2(-elements[1][2], elements[2][2]);
- euler.y = Math::asin(sy);
- euler.z = Math::atan2(-elements[0][1], elements[0][0]);
- }
- } else {
- euler.x = -Math::atan2(elements[0][1], elements[1][1]);
- euler.y = -Math_PI / 2.0;
- euler.z = 0.0;
- }
- } else {
- euler.x = Math::atan2(elements[0][1], elements[1][1]);
- euler.y = Math_PI / 2.0;
- euler.z = 0.0;
- }
- return euler;
- }
- // set_euler_xyz expects a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // The current implementation uses XYZ convention (Z is the first rotation).
- void Basis::set_euler_xyz(const Vector3 &p_euler) {
- real_t c, s;
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
- //optimizer will optimize away all this anyway
- *this = xmat * (ymat * zmat);
- }
- // get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
- // as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
- // as the x, y, and z components of a Vector3 respectively.
- Vector3 Basis::get_euler_yxz() const {
- // Euler angles in YXZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
- // cx*sz cx*cz -sx
- // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
- Vector3 euler;
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(is_rotation() == false, euler);
- #endif
- real_t m12 = elements[1][2];
- if (m12 < 1) {
- if (m12 > -1) {
- // is this a pure X rotation?
- if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = atan2(-m12, elements[1][1]);
- euler.y = 0;
- euler.z = 0;
- } else {
- euler.x = asin(-m12);
- euler.y = atan2(elements[0][2], elements[2][2]);
- euler.z = atan2(elements[1][0], elements[1][1]);
- }
- } else { // m12 == -1
- euler.x = Math_PI * 0.5;
- euler.y = -atan2(-elements[0][1], elements[0][0]);
- euler.z = 0;
- }
- } else { // m12 == 1
- euler.x = -Math_PI * 0.5;
- euler.y = -atan2(-elements[0][1], elements[0][0]);
- euler.z = 0;
- }
- return euler;
- }
- // set_euler_yxz expects a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // The current implementation uses YXZ convention (Z is the first rotation).
- void Basis::set_euler_yxz(const Vector3 &p_euler) {
- real_t c, s;
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
- //optimizer will optimize away all this anyway
- *this = ymat * xmat * zmat;
- }
- bool Basis::is_equal_approx(const Basis &a, const Basis &b) const {
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- if (Math::is_equal_approx(a.elements[i][j], b.elements[i][j]) == false)
- return false;
- }
- }
- return true;
- }
- bool Basis::operator==(const Basis &p_matrix) const {
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- if (elements[i][j] != p_matrix.elements[i][j])
- return false;
- }
- }
- return true;
- }
- bool Basis::operator!=(const Basis &p_matrix) const {
- return (!(*this == p_matrix));
- }
- Basis::operator String() const {
- String mtx;
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- if (i != 0 || j != 0)
- mtx += ", ";
- mtx += rtos(elements[i][j]);
- }
- }
- return mtx;
- }
- Quat Basis::get_quat() const {
- //commenting this check because precision issues cause it to fail when it shouldn't
- //#ifdef MATH_CHECKS
- //ERR_FAIL_COND_V(is_rotation() == false, Quat());
- //#endif
- real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
- real_t temp[4];
- if (trace > 0.0) {
- real_t s = Math::sqrt(trace + 1.0);
- temp[3] = (s * 0.5);
- s = 0.5 / s;
- temp[0] = ((elements[2][1] - elements[1][2]) * s);
- temp[1] = ((elements[0][2] - elements[2][0]) * s);
- temp[2] = ((elements[1][0] - elements[0][1]) * s);
- } else {
- int i = elements[0][0] < elements[1][1] ?
- (elements[1][1] < elements[2][2] ? 2 : 1) :
- (elements[0][0] < elements[2][2] ? 2 : 0);
- int j = (i + 1) % 3;
- int k = (i + 2) % 3;
- real_t s = Math::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
- temp[i] = s * 0.5;
- s = 0.5 / s;
- temp[3] = (elements[k][j] - elements[j][k]) * s;
- temp[j] = (elements[j][i] + elements[i][j]) * s;
- temp[k] = (elements[k][i] + elements[i][k]) * s;
- }
- return Quat(temp[0], temp[1], temp[2], temp[3]);
- }
- static const Basis _ortho_bases[24] = {
- Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
- Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
- Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
- Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
- Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
- Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
- Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
- Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
- Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
- Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
- Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
- Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
- Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
- Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
- Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
- Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
- Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
- Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
- Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
- Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
- Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
- Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
- Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
- Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
- };
- int Basis::get_orthogonal_index() const {
- //could be sped up if i come up with a way
- Basis orth = *this;
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- real_t v = orth[i][j];
- if (v > 0.5)
- v = 1.0;
- else if (v < -0.5)
- v = -1.0;
- else
- v = 0;
- orth[i][j] = v;
- }
- }
- for (int i = 0; i < 24; i++) {
- if (_ortho_bases[i] == orth)
- return i;
- }
- return 0;
- }
- void Basis::set_orthogonal_index(int p_index) {
- //there only exist 24 orthogonal bases in r3
- ERR_FAIL_INDEX(p_index, 24);
- *this = _ortho_bases[p_index];
- }
- void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND(is_rotation() == false);
- #endif
- real_t angle, x, y, z; // variables for result
- real_t epsilon = 0.01; // margin to allow for rounding errors
- real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
- if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
- // singularity found
- // first check for identity matrix which must have +1 for all terms
- // in leading diagonaland zero in other terms
- if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
- // this singularity is identity matrix so angle = 0
- r_axis = Vector3(0, 1, 0);
- r_angle = 0;
- return;
- }
- // otherwise this singularity is angle = 180
- angle = Math_PI;
- real_t xx = (elements[0][0] + 1) / 2;
- real_t yy = (elements[1][1] + 1) / 2;
- real_t zz = (elements[2][2] + 1) / 2;
- real_t xy = (elements[1][0] + elements[0][1]) / 4;
- real_t xz = (elements[2][0] + elements[0][2]) / 4;
- real_t yz = (elements[2][1] + elements[1][2]) / 4;
- if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
- if (xx < epsilon) {
- x = 0;
- y = 0.7071;
- z = 0.7071;
- } else {
- x = Math::sqrt(xx);
- y = xy / x;
- z = xz / x;
- }
- } else if (yy > zz) { // elements[1][1] is the largest diagonal term
- if (yy < epsilon) {
- x = 0.7071;
- y = 0;
- z = 0.7071;
- } else {
- y = Math::sqrt(yy);
- x = xy / y;
- z = yz / y;
- }
- } else { // elements[2][2] is the largest diagonal term so base result on this
- if (zz < epsilon) {
- x = 0.7071;
- y = 0.7071;
- z = 0;
- } else {
- z = Math::sqrt(zz);
- x = xz / z;
- y = yz / z;
- }
- }
- r_axis = Vector3(x, y, z);
- r_angle = angle;
- return;
- }
- // as we have reached here there are no singularities so we can handle normally
- real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
- angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
- if (angle < 0) s = -s;
- x = (elements[2][1] - elements[1][2]) / s;
- y = (elements[0][2] - elements[2][0]) / s;
- z = (elements[1][0] - elements[0][1]) / s;
- r_axis = Vector3(x, y, z);
- r_angle = angle;
- }
- void Basis::set_quat(const Quat &p_quat) {
- real_t d = p_quat.length_squared();
- real_t s = 2.0 / d;
- real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
- real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
- real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
- real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
- set(1.0 - (yy + zz), xy - wz, xz + wy,
- xy + wz, 1.0 - (xx + zz), yz - wx,
- xz - wy, yz + wx, 1.0 - (xx + yy));
- }
- void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
- // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
- #ifdef MATH_CHECKS
- ERR_FAIL_COND(p_axis.is_normalized() == false);
- #endif
- Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
- real_t cosine = Math::cos(p_phi);
- real_t sine = Math::sin(p_phi);
- elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
- elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine;
- elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine;
- elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine;
- elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
- elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine;
- elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine;
- elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
- elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
- }
|