123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- /**************************************************************************/
- /* basis.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #pragma once
- #include "core/math/quaternion.h"
- #include "core/math/vector3.h"
- struct [[nodiscard]] Basis {
- Vector3 rows[3] = {
- Vector3(1, 0, 0),
- Vector3(0, 1, 0),
- Vector3(0, 0, 1)
- };
- constexpr const Vector3 &operator[](int p_row) const {
- return rows[p_row];
- }
- constexpr Vector3 &operator[](int p_row) {
- return rows[p_row];
- }
- void invert();
- void transpose();
- Basis inverse() const;
- Basis transposed() const;
- _FORCE_INLINE_ real_t determinant() const;
- void rotate(const Vector3 &p_axis, real_t p_angle);
- Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
- void rotate_local(const Vector3 &p_axis, real_t p_angle);
- Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
- void rotate(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ);
- Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) const;
- void rotate(const Quaternion &p_quaternion);
- Basis rotated(const Quaternion &p_quaternion) const;
- Vector3 get_euler_normalized(EulerOrder p_order = EulerOrder::YXZ) const;
- void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
- void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
- Quaternion get_rotation_quaternion() const;
- void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
- Vector3 rotref_posscale_decomposition(Basis &rotref) const;
- Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const;
- void set_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ);
- static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) {
- Basis b;
- b.set_euler(p_euler, p_order);
- return b;
- }
- Quaternion get_quaternion() const;
- void set_quaternion(const Quaternion &p_quaternion);
- void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
- void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
- void scale(const Vector3 &p_scale);
- Basis scaled(const Vector3 &p_scale) const;
- void scale_local(const Vector3 &p_scale);
- Basis scaled_local(const Vector3 &p_scale) const;
- void scale_orthogonal(const Vector3 &p_scale);
- Basis scaled_orthogonal(const Vector3 &p_scale) const;
- real_t get_uniform_scale() const;
- Vector3 get_scale() const;
- Vector3 get_scale_abs() const;
- Vector3 get_scale_global() const;
- void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
- void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EulerOrder::YXZ);
- void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
- // transposed dot products
- _FORCE_INLINE_ real_t tdotx(const Vector3 &p_v) const {
- return rows[0][0] * p_v[0] + rows[1][0] * p_v[1] + rows[2][0] * p_v[2];
- }
- _FORCE_INLINE_ real_t tdoty(const Vector3 &p_v) const {
- return rows[0][1] * p_v[0] + rows[1][1] * p_v[1] + rows[2][1] * p_v[2];
- }
- _FORCE_INLINE_ real_t tdotz(const Vector3 &p_v) const {
- return rows[0][2] * p_v[0] + rows[1][2] * p_v[1] + rows[2][2] * p_v[2];
- }
- bool is_equal_approx(const Basis &p_basis) const;
- bool is_same(const Basis &p_basis) const;
- bool is_finite() const;
- constexpr bool operator==(const Basis &p_matrix) const;
- constexpr bool operator!=(const Basis &p_matrix) const;
- _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
- _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
- _FORCE_INLINE_ void operator*=(const Basis &p_matrix);
- _FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
- constexpr void operator+=(const Basis &p_matrix);
- constexpr Basis operator+(const Basis &p_matrix) const;
- constexpr void operator-=(const Basis &p_matrix);
- constexpr Basis operator-(const Basis &p_matrix) const;
- constexpr void operator*=(real_t p_val);
- constexpr Basis operator*(real_t p_val) const;
- constexpr void operator/=(real_t p_val);
- constexpr Basis operator/(real_t p_val) const;
- bool is_orthogonal() const;
- bool is_orthonormal() const;
- bool is_conformal() const;
- bool is_diagonal() const;
- bool is_rotation() const;
- Basis lerp(const Basis &p_to, real_t p_weight) const;
- Basis slerp(const Basis &p_to, real_t p_weight) const;
- void rotate_sh(real_t *p_values);
- operator String() const;
- /* create / set */
- _FORCE_INLINE_ void set(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
- rows[0][0] = p_xx;
- rows[0][1] = p_xy;
- rows[0][2] = p_xz;
- rows[1][0] = p_yx;
- rows[1][1] = p_yy;
- rows[1][2] = p_yz;
- rows[2][0] = p_zx;
- rows[2][1] = p_zy;
- rows[2][2] = p_zz;
- }
- _FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
- set_column(0, p_x);
- set_column(1, p_y);
- set_column(2, p_z);
- }
- _FORCE_INLINE_ Vector3 get_column(int p_index) const {
- // Get actual basis axis column (we store transposed as rows for performance).
- return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]);
- }
- _FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) {
- // Set actual basis axis column (we store transposed as rows for performance).
- rows[0][p_index] = p_value.x;
- rows[1][p_index] = p_value.y;
- rows[2][p_index] = p_value.z;
- }
- _FORCE_INLINE_ Vector3 get_main_diagonal() const {
- return Vector3(rows[0][0], rows[1][1], rows[2][2]);
- }
- _FORCE_INLINE_ void set_zero() {
- rows[0].zero();
- rows[1].zero();
- rows[2].zero();
- }
- _FORCE_INLINE_ Basis transpose_xform(const Basis &p_m) const {
- return Basis(
- rows[0].x * p_m[0].x + rows[1].x * p_m[1].x + rows[2].x * p_m[2].x,
- rows[0].x * p_m[0].y + rows[1].x * p_m[1].y + rows[2].x * p_m[2].y,
- rows[0].x * p_m[0].z + rows[1].x * p_m[1].z + rows[2].x * p_m[2].z,
- rows[0].y * p_m[0].x + rows[1].y * p_m[1].x + rows[2].y * p_m[2].x,
- rows[0].y * p_m[0].y + rows[1].y * p_m[1].y + rows[2].y * p_m[2].y,
- rows[0].y * p_m[0].z + rows[1].y * p_m[1].z + rows[2].y * p_m[2].z,
- rows[0].z * p_m[0].x + rows[1].z * p_m[1].x + rows[2].z * p_m[2].x,
- rows[0].z * p_m[0].y + rows[1].z * p_m[1].y + rows[2].z * p_m[2].y,
- rows[0].z * p_m[0].z + rows[1].z * p_m[1].z + rows[2].z * p_m[2].z);
- }
- constexpr Basis(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) :
- rows{
- { p_xx, p_xy, p_xz },
- { p_yx, p_yy, p_yz },
- { p_zx, p_zy, p_zz },
- } {}
- void orthonormalize();
- Basis orthonormalized() const;
- void orthogonalize();
- Basis orthogonalized() const;
- #ifdef MATH_CHECKS
- bool is_symmetric() const;
- #endif
- Basis diagonalize();
- operator Quaternion() const { return get_quaternion(); }
- static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false);
- Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); }
- Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
- Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
- Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
- static Basis from_scale(const Vector3 &p_scale);
- constexpr Basis(const Vector3 &p_x_axis, const Vector3 &p_y_axis, const Vector3 &p_z_axis) :
- rows{
- { p_x_axis.x, p_y_axis.x, p_z_axis.x },
- { p_x_axis.y, p_y_axis.y, p_z_axis.y },
- { p_x_axis.z, p_y_axis.z, p_z_axis.z },
- } {}
- Basis() = default;
- private:
- // Helper method.
- void _set_diagonal(const Vector3 &p_diag);
- };
- constexpr bool Basis::operator==(const Basis &p_matrix) const {
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- if (rows[i][j] != p_matrix.rows[i][j]) {
- return false;
- }
- }
- }
- return true;
- }
- constexpr bool Basis::operator!=(const Basis &p_matrix) const {
- return (!(*this == p_matrix));
- }
- _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
- set(
- p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
- p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
- p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
- }
- _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
- return Basis(
- p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
- p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
- p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
- }
- constexpr void Basis::operator+=(const Basis &p_matrix) {
- rows[0] += p_matrix.rows[0];
- rows[1] += p_matrix.rows[1];
- rows[2] += p_matrix.rows[2];
- }
- constexpr Basis Basis::operator+(const Basis &p_matrix) const {
- Basis ret(*this);
- ret += p_matrix;
- return ret;
- }
- constexpr void Basis::operator-=(const Basis &p_matrix) {
- rows[0] -= p_matrix.rows[0];
- rows[1] -= p_matrix.rows[1];
- rows[2] -= p_matrix.rows[2];
- }
- constexpr Basis Basis::operator-(const Basis &p_matrix) const {
- Basis ret(*this);
- ret -= p_matrix;
- return ret;
- }
- constexpr void Basis::operator*=(real_t p_val) {
- rows[0] *= p_val;
- rows[1] *= p_val;
- rows[2] *= p_val;
- }
- constexpr Basis Basis::operator*(real_t p_val) const {
- Basis ret(*this);
- ret *= p_val;
- return ret;
- }
- constexpr void Basis::operator/=(real_t p_val) {
- rows[0] /= p_val;
- rows[1] /= p_val;
- rows[2] /= p_val;
- }
- constexpr Basis Basis::operator/(real_t p_val) const {
- Basis ret(*this);
- ret /= p_val;
- return ret;
- }
- Vector3 Basis::xform(const Vector3 &p_vector) const {
- return Vector3(
- rows[0].dot(p_vector),
- rows[1].dot(p_vector),
- rows[2].dot(p_vector));
- }
- Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
- return Vector3(
- (rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z),
- (rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z),
- (rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z));
- }
- real_t Basis::determinant() const {
- return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) -
- rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) +
- rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]);
- }
|