tmp.agda 676 B

1234567891011121314151617181920212223242526272829303132
  1. module tmp where
  2. open import univ
  3. open import cwf
  4. open import Base
  5. open import Nat
  6. open import help
  7. open import proofs
  8. {- TODO: Prove
  9. w = ƛ ((w // wk) ∙ vz) (η)
  10. ƛ v // σ = ƛ (v // (σ ∘ wk ,, vz))
  11. w ∙ u // σ = (w // σ) ∙ (u // σ)
  12. -}
  13. {-
  14. lem-tmp : {Γ : Con}{A : Type Γ}(B : Type (Γ , A)) ->
  15. Π A B =Ty Π A (B / (wk ∘ wk ,, castElem ? vz) / [ vz ])
  16. lem-tmp B = ?
  17. lem-η : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)}(w : Elem Γ (Π A B)) ->
  18. w =El castElem (lem-tmp B)
  19. (ƛ {A = A}
  20. (castElem (symTy (lem-Π/ B wk)) (w // wk {A = A}) ∙ vz)
  21. )
  22. lem-η (elem (el < w , pw >)) = ?
  23. -}