1234567891011121314151617181920212223242526272829303132 |
- module tmp where
- open import univ
- open import cwf
- open import Base
- open import Nat
- open import help
- open import proofs
- {- TODO: Prove
- w = ƛ ((w // wk) ∙ vz) (η)
- ƛ v // σ = ƛ (v // (σ ∘ wk ,, vz))
- w ∙ u // σ = (w // σ) ∙ (u // σ)
- -}
- {-
- lem-tmp : {Γ : Con}{A : Type Γ}(B : Type (Γ , A)) ->
- Π A B =Ty Π A (B / (wk ∘ wk ,, castElem ? vz) / [ vz ])
- lem-tmp B = ?
- lem-η : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)}(w : Elem Γ (Π A B)) ->
- w =El castElem (lem-tmp B)
- (ƛ {A = A}
- (castElem (symTy (lem-Π/ B wk)) (w // wk {A = A}) ∙ vz)
- )
- lem-η (elem (el < w , pw >)) = ?
- -}
|