06-floor0.tex 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
  2. %!TEX root = Vorbis_I_spec.tex
  3. \section{Floor type 0 setup and decode} \label{vorbis:spec:floor0}
  4. \subsection{Overview}
  5. Vorbis floor type zero uses Line Spectral Pair (LSP, also alternately
  6. known as Line Spectral Frequency or LSF) representation to encode a
  7. smooth spectral envelope curve as the frequency response of the LSP
  8. filter. This representation is equivalent to a traditional all-pole
  9. infinite impulse response filter as would be used in linear predictive
  10. coding; LSP representation may be converted to LPC representation and
  11. vice-versa.
  12. \subsection{Floor 0 format}
  13. Floor zero configuration consists of six integer fields and a list of
  14. VQ codebooks for use in coding/decoding the LSP filter coefficient
  15. values used by each frame.
  16. \subsubsection{header decode}
  17. Configuration information for instances of floor zero decodes from the
  18. codec setup header (third packet). configuration decode proceeds as
  19. follows:
  20. \begin{Verbatim}[commandchars=\\\{\}]
  21. 1) [floor0\_order] = read an unsigned integer of 8 bits
  22. 2) [floor0\_rate] = read an unsigned integer of 16 bits
  23. 3) [floor0\_bark\_map\_size] = read an unsigned integer of 16 bits
  24. 4) [floor0\_amplitude\_bits] = read an unsigned integer of six bits
  25. 5) [floor0\_amplitude\_offset] = read an unsigned integer of eight bits
  26. 6) [floor0\_number\_of\_books] = read an unsigned integer of four bits and add 1
  27. 7) array [floor0\_book\_list] = read a list of [floor0\_number\_of\_books] unsigned integers of eight bits each;
  28. \end{Verbatim}
  29. An end-of-packet condition during any of these bitstream reads renders
  30. this stream undecodable. In addition, any element of the array
  31. \varname{[floor0\_book\_list]} that is greater than the maximum codebook
  32. number for this bitstream is an error condition that also renders the
  33. stream undecodable.
  34. \subsubsection{packet decode} \label{vorbis:spec:floor0-decode}
  35. Extracting a floor0 curve from an audio packet consists of first
  36. decoding the curve amplitude and \varname{[floor0\_order]} LSP
  37. coefficient values from the bitstream, and then computing the floor
  38. curve, which is defined as the frequency response of the decoded LSP
  39. filter.
  40. Packet decode proceeds as follows:
  41. \begin{Verbatim}[commandchars=\\\{\}]
  42. 1) [amplitude] = read an unsigned integer of [floor0\_amplitude\_bits] bits
  43. 2) if ( [amplitude] is greater than zero ) \{
  44. 3) [coefficients] is an empty, zero length vector
  45. 4) [booknumber] = read an unsigned integer of \link{vorbis:spec:ilog}{ilog}( [floor0\_number\_of\_books] ) bits
  46. 5) if ( [booknumber] is greater than the highest number decode codebook ) then packet is undecodable
  47. 6) [last] = zero;
  48. 7) vector [temp\_vector] = read vector from bitstream using codebook number [floor0\_book\_list] element [booknumber] in VQ context.
  49. 8) add the scalar value [last] to each scalar in vector [temp\_vector]
  50. 9) [last] = the value of the last scalar in vector [temp\_vector]
  51. 10) concatenate [temp\_vector] onto the end of the [coefficients] vector
  52. 11) if (length of vector [coefficients] is less than [floor0\_order], continue at step 6
  53. \}
  54. 12) done.
  55. \end{Verbatim}
  56. Take note of the following properties of decode:
  57. \begin{itemize}
  58. \item An \varname{[amplitude]} value of zero must result in a return code that indicates this channel is unused in this frame (the output of the channel will be all-zeroes in synthesis). Several later stages of decode don't occur for an unused channel.
  59. \item An end-of-packet condition during decode should be considered a
  60. nominal occruence; if end-of-packet is reached during any read
  61. operation above, floor decode is to return 'unused' status as if the
  62. \varname{[amplitude]} value had read zero at the beginning of decode.
  63. \item The book number used for decode
  64. can, in fact, be stored in the bitstream in \link{vorbis:spec:ilog}{ilog}( \varname{[floor0\_number\_of\_books]} -
  65. 1 ) bits. Nevertheless, the above specification is correct and values
  66. greater than the maximum possible book value are reserved.
  67. \item The number of scalars read into the vector \varname{[coefficients]}
  68. may be greater than \varname{[floor0\_order]}, the number actually
  69. required for curve computation. For example, if the VQ codebook used
  70. for the floor currently being decoded has a
  71. \varname{[codebook\_dimensions]} value of three and
  72. \varname{[floor0\_order]} is ten, the only way to fill all the needed
  73. scalars in \varname{[coefficients]} is to to read a total of twelve
  74. scalars as four vectors of three scalars each. This is not an error
  75. condition, and care must be taken not to allow a buffer overflow in
  76. decode. The extra values are not used and may be ignored or discarded.
  77. \end{itemize}
  78. \subsubsection{curve computation} \label{vorbis:spec:floor0-synth}
  79. Given an \varname{[amplitude]} integer and \varname{[coefficients]}
  80. vector from packet decode as well as the [floor0\_order],
  81. [floor0\_rate], [floor0\_bark\_map\_size], [floor0\_amplitude\_bits] and
  82. [floor0\_amplitude\_offset] values from floor setup, and an output
  83. vector size \varname{[n]} specified by the decode process, we compute a
  84. floor output vector.
  85. If the value \varname{[amplitude]} is zero, the return value is a
  86. length \varname{[n]} vector with all-zero scalars. Otherwise, begin by
  87. assuming the following definitions for the given vector to be
  88. synthesized:
  89. \begin{displaymath}
  90. \mathrm{map}_i = \left\{
  91. \begin{array}{ll}
  92. \min (
  93. \mathtt{floor0\texttt{\_}bark\texttt{\_}map\texttt{\_}size} - 1,
  94. foobar
  95. ) & \textrm{for } i \in [0,n-1] \\
  96. -1 & \textrm{for } i = n
  97. \end{array}
  98. \right.
  99. \end{displaymath}
  100. where
  101. \begin{displaymath}
  102. foobar =
  103. \left\lfloor
  104. \mathrm{bark}\left(\frac{\mathtt{floor0\texttt{\_}rate} \cdot i}{2n}\right) \cdot \frac{\mathtt{floor0\texttt{\_}bark\texttt{\_}map\texttt{\_}size}} {\mathrm{bark}(.5 \cdot \mathtt{floor0\texttt{\_}rate})}
  105. \right\rfloor
  106. \end{displaymath}
  107. and
  108. \begin{displaymath}
  109. \mathrm{bark}(x) = 13.1 \arctan (.00074x) + 2.24 \arctan (.0000000185x^2) + .0001x
  110. \end{displaymath}
  111. The above is used to synthesize the LSP curve on a Bark-scale frequency
  112. axis, then map the result to a linear-scale frequency axis.
  113. Similarly, the below calculation synthesizes the output LSP curve \varname{[output]} on a log
  114. (dB) amplitude scale, mapping it to linear amplitude in the last step:
  115. \begin{enumerate}
  116. \item \varname{[i]} = 0
  117. \item \varname{[$\omega$]} = $\pi$ * map element \varname{[i]} / \varname{[floor0\_bark\_map\_size]}
  118. \item if ( \varname{[floor0\_order]} is odd ) {
  119. \begin{enumerate}
  120. \item calculate \varname{[p]} and \varname{[q]} according to:
  121. \begin{eqnarray*}
  122. p & = & (1 - \cos^2\omega)\prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-3}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
  123. q & = & \frac{1}{4} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-1}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2
  124. \end{eqnarray*}
  125. \end{enumerate}
  126. } else \varname{[floor0\_order]} is even {
  127. \begin{enumerate}[resume]
  128. \item calculate \varname{[p]} and \varname{[q]} according to:
  129. \begin{eqnarray*}
  130. p & = & \frac{(1 - \cos\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
  131. q & = & \frac{(1 + \cos\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2
  132. \end{eqnarray*}
  133. \end{enumerate}
  134. }
  135. \item calculate \varname{[linear\_floor\_value]} according to:
  136. \begin{displaymath}
  137. \exp \left( .11512925 \left(\frac{\mathtt{amplitude} \cdot \mathtt{floor0\texttt{\_}amplitute\texttt{\_}offset}}{(2^{\mathtt{floor0\texttt{\_}amplitude\texttt{\_}bits}}-1)\sqrt{p+q}}
  138. - \mathtt{floor0\texttt{\_}amplitude\texttt{\_}offset} \right) \right)
  139. \end{displaymath}
  140. \item \varname{[iteration\_condition]} = map element \varname{[i]}
  141. \item \varname{[output]} element \varname{[i]} = \varname{[linear\_floor\_value]}
  142. \item increment \varname{[i]}
  143. \item if ( map element \varname{[i]} is equal to \varname{[iteration\_condition]} ) continue at step 5
  144. \item if ( \varname{[i]} is less than \varname{[n]} ) continue at step 2
  145. \item done
  146. \end{enumerate}
  147. \paragraph{Errata 20150227: Bark scale computation}
  148. Due to a typo when typesetting this version of the specification from the original HTML document, the Bark scale computation previously erroneously read:
  149. \begin{displaymath}
  150. \hbox{\sout{$
  151. \mathrm{bark}(x) = 13.1 \arctan (.00074x) + 2.24 \arctan (.0000000185x^2 + .0001x)
  152. $}}
  153. \end{displaymath}
  154. Note that the last parenthesis is misplaced. This document now uses the correct equation as it appeared in the original HTML spec document:
  155. \begin{displaymath}
  156. \mathrm{bark}(x) = 13.1 \arctan (.00074x) + 2.24 \arctan (.0000000185x^2) + .0001x
  157. \end{displaymath}