123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
- %!TEX root = Vorbis_I_spec.tex
- \section{Floor type 0 setup and decode} \label{vorbis:spec:floor0}
- \subsection{Overview}
- Vorbis floor type zero uses Line Spectral Pair (LSP, also alternately
- known as Line Spectral Frequency or LSF) representation to encode a
- smooth spectral envelope curve as the frequency response of the LSP
- filter. This representation is equivalent to a traditional all-pole
- infinite impulse response filter as would be used in linear predictive
- coding; LSP representation may be converted to LPC representation and
- vice-versa.
- \subsection{Floor 0 format}
- Floor zero configuration consists of six integer fields and a list of
- VQ codebooks for use in coding/decoding the LSP filter coefficient
- values used by each frame.
- \subsubsection{header decode}
- Configuration information for instances of floor zero decodes from the
- codec setup header (third packet). configuration decode proceeds as
- follows:
- \begin{Verbatim}[commandchars=\\\{\}]
- 1) [floor0\_order] = read an unsigned integer of 8 bits
- 2) [floor0\_rate] = read an unsigned integer of 16 bits
- 3) [floor0\_bark\_map\_size] = read an unsigned integer of 16 bits
- 4) [floor0\_amplitude\_bits] = read an unsigned integer of six bits
- 5) [floor0\_amplitude\_offset] = read an unsigned integer of eight bits
- 6) [floor0\_number\_of\_books] = read an unsigned integer of four bits and add 1
- 7) array [floor0\_book\_list] = read a list of [floor0\_number\_of\_books] unsigned integers of eight bits each;
- \end{Verbatim}
- An end-of-packet condition during any of these bitstream reads renders
- this stream undecodable. In addition, any element of the array
- \varname{[floor0\_book\_list]} that is greater than the maximum codebook
- number for this bitstream is an error condition that also renders the
- stream undecodable.
- \subsubsection{packet decode} \label{vorbis:spec:floor0-decode}
- Extracting a floor0 curve from an audio packet consists of first
- decoding the curve amplitude and \varname{[floor0\_order]} LSP
- coefficient values from the bitstream, and then computing the floor
- curve, which is defined as the frequency response of the decoded LSP
- filter.
- Packet decode proceeds as follows:
- \begin{Verbatim}[commandchars=\\\{\}]
- 1) [amplitude] = read an unsigned integer of [floor0\_amplitude\_bits] bits
- 2) if ( [amplitude] is greater than zero ) \{
- 3) [coefficients] is an empty, zero length vector
- 4) [booknumber] = read an unsigned integer of \link{vorbis:spec:ilog}{ilog}( [floor0\_number\_of\_books] ) bits
- 5) if ( [booknumber] is greater than the highest number decode codebook ) then packet is undecodable
- 6) [last] = zero;
- 7) vector [temp\_vector] = read vector from bitstream using codebook number [floor0\_book\_list] element [booknumber] in VQ context.
- 8) add the scalar value [last] to each scalar in vector [temp\_vector]
- 9) [last] = the value of the last scalar in vector [temp\_vector]
- 10) concatenate [temp\_vector] onto the end of the [coefficients] vector
- 11) if (length of vector [coefficients] is less than [floor0\_order], continue at step 6
- \}
- 12) done.
- \end{Verbatim}
- Take note of the following properties of decode:
- \begin{itemize}
- \item An \varname{[amplitude]} value of zero must result in a return code that indicates this channel is unused in this frame (the output of the channel will be all-zeroes in synthesis). Several later stages of decode don't occur for an unused channel.
- \item An end-of-packet condition during decode should be considered a
- nominal occruence; if end-of-packet is reached during any read
- operation above, floor decode is to return 'unused' status as if the
- \varname{[amplitude]} value had read zero at the beginning of decode.
- \item The book number used for decode
- can, in fact, be stored in the bitstream in \link{vorbis:spec:ilog}{ilog}( \varname{[floor0\_number\_of\_books]} -
- 1 ) bits. Nevertheless, the above specification is correct and values
- greater than the maximum possible book value are reserved.
- \item The number of scalars read into the vector \varname{[coefficients]}
- may be greater than \varname{[floor0\_order]}, the number actually
- required for curve computation. For example, if the VQ codebook used
- for the floor currently being decoded has a
- \varname{[codebook\_dimensions]} value of three and
- \varname{[floor0\_order]} is ten, the only way to fill all the needed
- scalars in \varname{[coefficients]} is to to read a total of twelve
- scalars as four vectors of three scalars each. This is not an error
- condition, and care must be taken not to allow a buffer overflow in
- decode. The extra values are not used and may be ignored or discarded.
- \end{itemize}
- \subsubsection{curve computation} \label{vorbis:spec:floor0-synth}
- Given an \varname{[amplitude]} integer and \varname{[coefficients]}
- vector from packet decode as well as the [floor0\_order],
- [floor0\_rate], [floor0\_bark\_map\_size], [floor0\_amplitude\_bits] and
- [floor0\_amplitude\_offset] values from floor setup, and an output
- vector size \varname{[n]} specified by the decode process, we compute a
- floor output vector.
- If the value \varname{[amplitude]} is zero, the return value is a
- length \varname{[n]} vector with all-zero scalars. Otherwise, begin by
- assuming the following definitions for the given vector to be
- synthesized:
- \begin{displaymath}
- \mathrm{map}_i = \left\{
- \begin{array}{ll}
- \min (
- \mathtt{floor0\texttt{\_}bark\texttt{\_}map\texttt{\_}size} - 1,
- foobar
- ) & \textrm{for } i \in [0,n-1] \\
- -1 & \textrm{for } i = n
- \end{array}
- \right.
- \end{displaymath}
- where
- \begin{displaymath}
- foobar =
- \left\lfloor
- \mathrm{bark}\left(\frac{\mathtt{floor0\texttt{\_}rate} \cdot i}{2n}\right) \cdot \frac{\mathtt{floor0\texttt{\_}bark\texttt{\_}map\texttt{\_}size}} {\mathrm{bark}(.5 \cdot \mathtt{floor0\texttt{\_}rate})}
- \right\rfloor
- \end{displaymath}
- and
- \begin{displaymath}
- \mathrm{bark}(x) = 13.1 \arctan (.00074x) + 2.24 \arctan (.0000000185x^2) + .0001x
- \end{displaymath}
- The above is used to synthesize the LSP curve on a Bark-scale frequency
- axis, then map the result to a linear-scale frequency axis.
- Similarly, the below calculation synthesizes the output LSP curve \varname{[output]} on a log
- (dB) amplitude scale, mapping it to linear amplitude in the last step:
- \begin{enumerate}
- \item \varname{[i]} = 0
- \item \varname{[$\omega$]} = $\pi$ * map element \varname{[i]} / \varname{[floor0\_bark\_map\_size]}
- \item if ( \varname{[floor0\_order]} is odd ) {
- \begin{enumerate}
- \item calculate \varname{[p]} and \varname{[q]} according to:
- \begin{eqnarray*}
- p & = & (1 - \cos^2\omega)\prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-3}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
- q & = & \frac{1}{4} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-1}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2
- \end{eqnarray*}
- \end{enumerate}
- } else \varname{[floor0\_order]} is even {
- \begin{enumerate}[resume]
- \item calculate \varname{[p]} and \varname{[q]} according to:
- \begin{eqnarray*}
- p & = & \frac{(1 - \cos\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
- q & = & \frac{(1 + \cos\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2
- \end{eqnarray*}
- \end{enumerate}
- }
- \item calculate \varname{[linear\_floor\_value]} according to:
- \begin{displaymath}
- \exp \left( .11512925 \left(\frac{\mathtt{amplitude} \cdot \mathtt{floor0\texttt{\_}amplitute\texttt{\_}offset}}{(2^{\mathtt{floor0\texttt{\_}amplitude\texttt{\_}bits}}-1)\sqrt{p+q}}
- - \mathtt{floor0\texttt{\_}amplitude\texttt{\_}offset} \right) \right)
- \end{displaymath}
- \item \varname{[iteration\_condition]} = map element \varname{[i]}
- \item \varname{[output]} element \varname{[i]} = \varname{[linear\_floor\_value]}
- \item increment \varname{[i]}
- \item if ( map element \varname{[i]} is equal to \varname{[iteration\_condition]} ) continue at step 5
- \item if ( \varname{[i]} is less than \varname{[n]} ) continue at step 2
- \item done
- \end{enumerate}
- \paragraph{Errata 20150227: Bark scale computation}
- Due to a typo when typesetting this version of the specification from the original HTML document, the Bark scale computation previously erroneously read:
- \begin{displaymath}
- \hbox{\sout{$
- \mathrm{bark}(x) = 13.1 \arctan (.00074x) + 2.24 \arctan (.0000000185x^2 + .0001x)
- $}}
- \end{displaymath}
- Note that the last parenthesis is misplaced. This document now uses the correct equation as it appeared in the original HTML spec document:
- \begin{displaymath}
- \mathrm{bark}(x) = 13.1 \arctan (.00074x) + 2.24 \arctan (.0000000185x^2) + .0001x
- \end{displaymath}
|