laplace.tex 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. \documentclass{article}
  2. \usepackage[dvipdfm]{graphicx}
  3. \usepackage[dvipdfm]{color}
  4. \usepackage[dvipdfm]{hyperref}
  5. \setlength{\parindent}{0cm}
  6. \title{SOFIA LAPLACE AND INVERSE LAPLACE TRANSFORM PACKAGE}
  7. \author{C. Kazasov\and M. Spiridonova \and V. Tomov}
  8. \date{}
  9. \begin{document}
  10. \maketitle
  11. \begin{center}
  12. \begin{tabular}{lp{10cm}}
  13. Reference: & {\bf Christomir Kazasov}, Laplace Transformations in REDUCE 3, Proc.
  14. Eurocal '87, Lecture Notes in Comp. Sci., Springer-Verlag
  15. (1987) 132-133.
  16. \end{tabular}
  17. \end{center}
  18. \ \\
  19. \ \\
  20. Some hints on how to use to use this package: \\
  21. \ \\
  22. Syntax: \\
  23. \ \\
  24. {\tt LAPLACE($<exp>,<var-s>,<var-t>$ }) \\
  25. \ \\
  26. {\tt INVLAP($<exp>,<var-s>,<var-t>$)} \\
  27. \ \\
  28. where $<exp>$ is the expression to be transformed, $<var-s>$ is the source
  29. variable (in most cases $<exp>$ depends explicitly of this variable) and
  30. $<var-t>$ is the target variable. If $<var-t>$ is omitted, the package uses
  31. an internal variable lp!\& or il!\&, respectively. \\
  32. \ \\
  33. The following switches can be used to control the transformations: \\
  34. \begin{center}
  35. \begin{tabular}{lp{10cm}}
  36. {\tt lmon}: & If on, sin, cos, sinh and cosh are converted by {\tt LAPLACE} into
  37. exponentials, \\
  38. {\tt lhyp}: & If on, expressions $e^{\tilde{}x}$ are converted by {\tt INVLAP} into
  39. hyperbolic functions sinh and cosh, \\
  40. {\tt ltrig}: & If on, expressions $e^{\tilde{}x}$ are converted by {\tt INVLAP} into
  41. trigonometric functions sin and cos. \\
  42. \end{tabular}
  43. \end{center}
  44. \ \\
  45. The system can be extended by adding Laplace transformation rules for
  46. single functions by rules or rule sets.~ In such a rule the source
  47. variable MUST be free, the target variable MUST be il!\& for {\tt LAPLACE} and
  48. lp!\& for {\tt INVLAP} and the third parameter should be omitted.~ Also rules for
  49. transforming derivatives are entered in such a form. \\
  50. \pagebreak
  51. {\bf Examples:}
  52. \begin{verbatim}
  53. let {laplace(log(~x),x) => -log(gam * il!&)/il!&,
  54. invlap(log(gam * ~x)/x,x) => -log(lp!&)};
  55. operator f;
  56. let{
  57. laplace(df(f(~x),x),x) => il!&*laplace(f(x),x) - sub(x=0,f(x)),
  58. laplace(df(f(~x),x,~n),x) => il!&**n*laplace(f(x),x) -
  59. for i:=n-1 step -1 until 0 sum
  60. sub(x=0, df(f(x),x,n-1-i)) * il!&**i
  61. when fixp n,
  62. laplace(f(~x),x) = f(il!&)
  63. };
  64. \end{verbatim}
  65. Remarks about some functions: \\
  66. \ \\
  67. The DELTA and GAMMA functions are known. \\
  68. ONE is the name of the unit step function. \\
  69. INTL is a parametrized integral function
  70. \begin{center}
  71. {\tt intl($<expr>,<var>,0,<obj.var>$)}
  72. \end{center}
  73. which means \char`\"{}Integral of $<expr>$ wrt.~ $<var>$ taken from 0 to $<obj.var>$\char`\"{},
  74. e.g. {\tt intl($2{*}y^2,y,0,x$)} which is formally a function in $x$.
  75. \ \\
  76. \ \\
  77. We recommend reading the file LAPLACE.TST for a further introduction.
  78. \end{document}