123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- \documentclass{article}
- \usepackage[dvipdfm]{graphicx}
- \usepackage[dvipdfm]{color}
- \usepackage[dvipdfm]{hyperref}
- \setlength{\parindent}{0cm}
- \title{SOFIA LAPLACE AND INVERSE LAPLACE TRANSFORM PACKAGE}
- \author{C. Kazasov\and M. Spiridonova \and V. Tomov}
- \date{}
- \begin{document}
- \maketitle
- \begin{center}
- \begin{tabular}{lp{10cm}}
- Reference: & {\bf Christomir Kazasov}, Laplace Transformations in REDUCE 3, Proc.
- Eurocal '87, Lecture Notes in Comp. Sci., Springer-Verlag
- (1987) 132-133.
- \end{tabular}
- \end{center}
- \ \\
- \ \\
- Some hints on how to use to use this package: \\
- \ \\
- Syntax: \\
- \ \\
- {\tt LAPLACE($<exp>,<var-s>,<var-t>$ }) \\
- \ \\
- {\tt INVLAP($<exp>,<var-s>,<var-t>$)} \\
- \ \\
- where $<exp>$ is the expression to be transformed, $<var-s>$ is the source
- variable (in most cases $<exp>$ depends explicitly of this variable) and
- $<var-t>$ is the target variable. If $<var-t>$ is omitted, the package uses
- an internal variable lp!\& or il!\&, respectively. \\
- \ \\
- The following switches can be used to control the transformations: \\
- \begin{center}
- \begin{tabular}{lp{10cm}}
- {\tt lmon}: & If on, sin, cos, sinh and cosh are converted by {\tt LAPLACE} into
- exponentials, \\
- {\tt lhyp}: & If on, expressions $e^{\tilde{}x}$ are converted by {\tt INVLAP} into
- hyperbolic functions sinh and cosh, \\
- {\tt ltrig}: & If on, expressions $e^{\tilde{}x}$ are converted by {\tt INVLAP} into
- trigonometric functions sin and cos. \\
- \end{tabular}
- \end{center}
- \ \\
- The system can be extended by adding Laplace transformation rules for
- single functions by rules or rule sets.~ In such a rule the source
- variable MUST be free, the target variable MUST be il!\& for {\tt LAPLACE} and
- lp!\& for {\tt INVLAP} and the third parameter should be omitted.~ Also rules for
- transforming derivatives are entered in such a form. \\
- \pagebreak
- {\bf Examples:}
- \begin{verbatim}
- let {laplace(log(~x),x) => -log(gam * il!&)/il!&,
- invlap(log(gam * ~x)/x,x) => -log(lp!&)};
- operator f;
- let{
- laplace(df(f(~x),x),x) => il!&*laplace(f(x),x) - sub(x=0,f(x)),
- laplace(df(f(~x),x,~n),x) => il!&**n*laplace(f(x),x) -
- for i:=n-1 step -1 until 0 sum
- sub(x=0, df(f(x),x,n-1-i)) * il!&**i
- when fixp n,
- laplace(f(~x),x) = f(il!&)
- };
- \end{verbatim}
- Remarks about some functions: \\
- \ \\
- The DELTA and GAMMA functions are known. \\
- ONE is the name of the unit step function. \\
- INTL is a parametrized integral function
- \begin{center}
- {\tt intl($<expr>,<var>,0,<obj.var>$)}
- \end{center}
- which means \char`\"{}Integral of $<expr>$ wrt.~ $<var>$ taken from 0 to $<obj.var>$\char`\"{},
- e.g. {\tt intl($2{*}y^2,y,0,x$)} which is formally a function in $x$.
- \ \\
- \ \\
- We recommend reading the file LAPLACE.TST for a further introduction.
- \end{document}
|