12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172 |
- Sun Jan 3 23:51:41 MET 1999
- REDUCE 3.7, 15-Jan-99 ...
- 1: 1:
- 2: 2: 2: 2: 2: 2: 2: 2: 2:
- 3: 3: off echo, dfprint$
- -------------------------------------------------------
- The following runs demonstrate the program LIEPDE for the
- computation of infinitesimal symmetries. Times given
- below refer to a 8 MB session under LINUX on a 133 MHz
- Pentium PC with the CRACK version of April 1998.
- -------------------------------------------------------
- The first example is a single ODE with a parametric
- function f=f(x) for which point symmetries are to be
- determined.
- (Time ~ 6 sec.)
- -------------------------------------------------------
- The ODE under investigation is :
- 2 2 3
- df(y,x,2)= - df(f,x)*y - 3*df(y,x)*f - df(y,x)*y - 2*f *y - f*y + y
- for the function(s) :
- y(x)
- The symmetries are:
- -------- 1. Symmetry:
- int(f,x) 1
- xi_x=e *int(-----------,x)
- int(f,x)
- e
- int(f,x) 1
- eta_y= - e *int(-----------,x)*f*y - y
- int(f,x)
- e
- -------- 2. Symmetry:
- int(f,x)
- xi_x= - e
- int(f,x)
- eta_y=e *f*y
- --------
- -------------------------------------------------------
- The following example demonstrates a number of things.
- The Burgers equation is investigated concerning third
- order symmetries. The equation is used to substitute
- df(u,t) and all derivatives of df(u,t). This computation
- also shows that any equations that remain unsolved are
- returned, like in this case the heat quation.
- (Time ~ 15 sec.)
- -------------------------------------------------------
- The PDE under investigation is :
- 2
- df(u,t)=df(u,x,2) + df(u,x)
- for the function(s) :
- u(x,t)
- The symmetries are:
- -------- 1. Symmetry:
- xi_t=0
- xi_x=0
- 2
- eta_u=df(u,x,2) + df(u,x)
- -------- 2. Symmetry:
- xi_t=0
- xi_x=0
- 2 2 2 2
- eta_u=4*df(u,x,2)*t + 4*df(u,x) *t + 4*df(u,x)*t*x + 2*t + x
- -------- 3. Symmetry:
- xi_t=0
- xi_x=0
- 2
- eta_u=4*df(u,x,2)*t + 4*df(u,x) *t + 2*df(u,x)*x - 1
- -------- 4. Symmetry:
- xi_t=0
- xi_x=0
- 3
- eta_u=df(u,x,3) + 3*df(u,x,2)*df(u,x) + df(u,x)
- -------- 5. Symmetry:
- xi_t=0
- xi_x=0
- 2 2 3 2
- eta_u=4*df(u,x,3)*t + 12*df(u,x,2)*df(u,x)*t + 4*df(u,x,2)*t*x + 4*df(u,x) *t
- 2 2
- + 4*df(u,x) *t*x + df(u,x)*x - x
- -------- 6. Symmetry:
- xi_t=0
- xi_x=0
- 3 3 2
- eta_u=8*df(u,x,3)*t + 24*df(u,x,2)*df(u,x)*t + 12*df(u,x,2)*t *x
- 3 3 2 2 2 2
- + 8*df(u,x) *t + 12*df(u,x) *t *x + 12*df(u,x)*t + 6*df(u,x)*t*x + 6*t*x
- 3
- + x
- -------- 7. Symmetry:
- xi_t=0
- xi_x=0
- eta_u
- 3 2
- =2*df(u,x,3)*t + 6*df(u,x,2)*df(u,x)*t + df(u,x,2)*x + 2*df(u,x) *t + df(u,x) *x
- -------- 8. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=df(u,x)
- -------- 9. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=2*df(u,x)*t + x
- -------- 10. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=1
- --------
- Further symmetries:
- xi_t=0
- xi_x=0
- c_27 + c_32
- eta_u=-------------
- u
- e
- with c_27(x,t), c_32(t)
- which still have to satisfy:
- 0=2*df( - c_27,t) - 2*df( - c_27,x,2) + df( - 2*c_32,t)
- -------------------------------------------------------
- Now the same equation is investigated, this time only
- df(u,x,2) and its derivatives are substituted. As a
- consequence less jet-variables (u-derivatives of lower
- order) are generated in the process of formulating the
- symmetry conditions. Less jet-variables in which the
- conditions have to be fulfilled identically means less
- overdetermined conditions and more solutions which to
- compute takes longer than before.
- (Time ~ 85 sec.)
- -------------------------------------------------------
- The PDE under investigation is :
- 2
- df(u,x,2)=df(u,t) - df(u,x)
- for the function(s) :
- u(x,t)
- The symmetries are:
- -------- 1. Symmetry:
- xi_t=0
- xi_x=0
- eta_u
- 2
- = - 2*df(u,t,x)*df(u,t) - df(u,t,2,x) - df(u,t,2)*df(u,x) - df(u,t) *df(u,x)
- -------- 2. Symmetry:
- xi_t=0
- xi_x=0
- 2 2 2
- eta_u= - 16*df(u,t,x)*df(u,t)*t - 2*df(u,t,x)*x - 8*df(u,t,2,x)*t
- 2 2 2
- - 8*df(u,t,2)*df(u,x)*t - 8*df(u,t,2)*t*x - 8*df(u,t) *df(u,x)*t
- 2 2
- - 8*df(u,t) *t*x - 2*df(u,t)*df(u,x)*x + 2*df(u,t)*x - df(u,x)
- -------- 3. Symmetry:
- xi_t=0
- xi_x=0
- 4 2 2 4
- eta_u= - 32*df(u,t,x)*df(u,t)*t - 24*df(u,t,x)*t *x - 16*df(u,t,2,x)*t
- 4 3 2 4
- - 16*df(u,t,2)*df(u,x)*t - 32*df(u,t,2)*t *x - 16*df(u,t) *df(u,x)*t
- 2 3 2 2 2
- - 32*df(u,t) *t *x - 24*df(u,t)*df(u,x)*t *x + 24*df(u,t)*t *x
- 3 2 2 4 3
- - 8*df(u,t)*t*x + 60*df(u,x)*t + 24*df(u,x)*t*x - df(u,x)*x + 36*t*x + 6*x
- -------- 4. Symmetry:
- xi_t=0
- xi_x=0
- 5 4 3 2
- eta_u= - 64*df(u,t,x)*df(u,t)*t - 160*df(u,t,x)*t - 80*df(u,t,x)*t *x
- 5 5 4
- - 32*df(u,t,2,x)*t - 32*df(u,t,2)*df(u,x)*t - 80*df(u,t,2)*t *x
- 2 5 2 4 4
- - 32*df(u,t) *df(u,x)*t - 80*df(u,t) *t *x - 160*df(u,t)*df(u,x)*t
- 3 2 3 2 3
- - 80*df(u,t)*df(u,x)*t *x - 240*df(u,t)*t *x - 40*df(u,t)*t *x
- 3 2 2 4 2 3 5
- - 120*df(u,x)*t - 120*df(u,x)*t *x - 10*df(u,x)*t*x - 60*t *x - 20*t*x - x
- -------- 5. Symmetry:
- xi_t=0
- xi_x=0
- 3 2 3
- eta_u= - 32*df(u,t,x)*df(u,t)*t - 12*df(u,t,x)*t*x - 16*df(u,t,2,x)*t
- 3 2 2 3
- - 16*df(u,t,2)*df(u,x)*t - 24*df(u,t,2)*t *x - 16*df(u,t) *df(u,x)*t
- 2 2 2 3
- - 24*df(u,t) *t *x - 12*df(u,t)*df(u,x)*t*x + 12*df(u,t)*t*x - 2*df(u,t)*x
- 2
- - 6*df(u,x)*t + 6*df(u,x)*x - 9*x
- -------- 6. Symmetry:
- xi_t=0
- xi_x=0
- eta_u= - 4*df(u,t,x)*df(u,t)*t - 2*df(u,t,2,x)*t - 2*df(u,t,2)*df(u,x)*t
- 2 2
- - df(u,t,2)*x - 2*df(u,t) *df(u,x)*t - df(u,t) *x
- -------- 7. Symmetry:
- xi_t=0
- xi_x=0
- 3
- eta_u= - df(u,t,3) - 3*df(u,t,2)*df(u,t) - df(u,t)
- -------- 8. Symmetry:
- xi_t=0
- xi_x=0
- 2
- eta_u= - 8*df(u,t,x)*df(u,t)*t*x + df(u,t,x)*x - 4*df(u,t,3)*t
- 2
- - 4*df(u,t,2,x)*t*x - 12*df(u,t,2)*df(u,t)*t - 4*df(u,t,2)*df(u,x)*t*x
- 2 3 2 2 2 2
- - df(u,t,2)*x - 4*df(u,t) *t - 4*df(u,t) *df(u,x)*t*x - df(u,t) *x
- + df(u,t)*df(u,x)*x
- -------- 9. Symmetry:
- xi_t=0
- xi_x=0
- 3 2 3
- eta_u= - 64*df(u,t,x)*df(u,t)*t *x + 24*df(u,t,x)*t *x - 8*df(u,t,x)*t*x
- 4 3 4
- - 16*df(u,t,3)*t - 32*df(u,t,2,x)*t *x - 48*df(u,t,2)*df(u,t)*t
- 3 2 2 3 4
- - 32*df(u,t,2)*df(u,x)*t *x - 24*df(u,t,2)*t *x - 16*df(u,t) *t
- 2 3 2 2 2 2
- - 32*df(u,t) *df(u,x)*t *x - 24*df(u,t) *t *x + 24*df(u,t)*df(u,x)*t *x
- 3 2 4
- - 8*df(u,t)*df(u,x)*t*x + 24*df(u,t)*t*x - df(u,t)*x - 24*df(u,x)*t*x
- 3 2
- + 6*df(u,x)*x - 30*t - 15*x
- -------- 10. Symmetry:
- xi_t=0
- xi_x=0
- 5 4 3 3
- eta_u= - 384*df(u,t,x)*df(u,t)*t *x - 960*df(u,t,x)*t *x - 160*df(u,t,x)*t *x
- 6 5 6
- - 64*df(u,t,3)*t - 192*df(u,t,2,x)*t *x - 192*df(u,t,2)*df(u,t)*t
- 5 5 4 2
- - 192*df(u,t,2)*df(u,x)*t *x - 480*df(u,t,2)*t - 240*df(u,t,2)*t *x
- 3 6 2 5 2 5
- - 64*df(u,t) *t - 192*df(u,t) *df(u,x)*t *x - 480*df(u,t) *t
- 2 4 2 4 3 3
- - 240*df(u,t) *t *x - 960*df(u,t)*df(u,x)*t *x - 160*df(u,t)*df(u,x)*t *x
- 4 3 2 2 4 3
- - 720*df(u,t)*t - 720*df(u,t)*t *x - 60*df(u,t)*t *x - 720*df(u,x)*t *x
- 2 3 5 3 2 2 4 6
- - 240*df(u,x)*t *x - 12*df(u,x)*t*x - 120*t - 180*t *x - 30*t*x - x
- -------- 11. Symmetry:
- xi_t=0
- xi_x=0
- 4 3 2 3
- eta_u= - 160*df(u,t,x)*df(u,t)*t *x + 80*df(u,t,x)*t *x - 40*df(u,t,x)*t *x
- 5 4 5
- - 32*df(u,t,3)*t - 80*df(u,t,2,x)*t *x - 96*df(u,t,2)*df(u,t)*t
- 4 3 2 3 5
- - 80*df(u,t,2)*df(u,x)*t *x - 80*df(u,t,2)*t *x - 32*df(u,t) *t
- 2 4 2 3 2 3
- - 80*df(u,t) *df(u,x)*t *x - 80*df(u,t) *t *x + 80*df(u,t)*df(u,x)*t *x
- 2 3 3 2 2
- - 40*df(u,t)*df(u,x)*t *x + 360*df(u,t)*t + 120*df(u,t)*t *x
- 4 2 3 5 2
- - 10*df(u,t)*t*x + 420*df(u,x)*t *x + 60*df(u,x)*t*x - df(u,x)*x + 120*t
- 2 4
- + 120*t*x + 10*x
- -------- 12. Symmetry:
- xi_t=0
- xi_x=0
- 2 3
- eta_u= - 48*df(u,t,x)*df(u,t)*t *x + 12*df(u,t,x)*t*x - 2*df(u,t,x)*x
- 3 2 3
- - 16*df(u,t,3)*t - 24*df(u,t,2,x)*t *x - 48*df(u,t,2)*df(u,t)*t
- 2 2 3 3
- - 24*df(u,t,2)*df(u,x)*t *x - 12*df(u,t,2)*t*x - 16*df(u,t) *t
- 2 2 2 2
- - 24*df(u,t) *df(u,x)*t *x - 12*df(u,t) *t*x + 12*df(u,t)*df(u,x)*t*x
- 3 2
- - 2*df(u,t)*df(u,x)*x + 6*df(u,t)*x - 6*df(u,x)*x + 3
- -------- 13. Symmetry:
- xi_t=0
- xi_x=0
- eta_u= - 2*df(u,t,x)*df(u,t)*x - 2*df(u,t,3)*t - df(u,t,2,x)*x
- 3
- - 6*df(u,t,2)*df(u,t)*t - df(u,t,2)*df(u,x)*x - 2*df(u,t) *t
- 2
- - df(u,t) *df(u,x)*x
- -------- 14. Symmetry:
- xi_t=0
- xi_x=0
- 2
- eta_u=df(u,t,2) + df(u,t)
- -------- 15. Symmetry:
- xi_t=0
- xi_x=0
- 2 2 2
- eta_u= - 8*df(u,t,x)*t*x - 8*df(u,t,2)*t - 8*df(u,t) *t
- 2
- - 8*df(u,t)*df(u,x)*t*x - 2*df(u,t)*x + 2*df(u,x)*x - 1
- -------- 16. Symmetry:
- xi_t=0
- xi_x=0
- 3 4 2 4
- eta_u= - 32*df(u,t,x)*t *x - 16*df(u,t,2)*t - 16*df(u,t) *t
- 3 3 2 2 2
- - 32*df(u,t)*df(u,x)*t *x - 48*df(u,t)*t - 24*df(u,t)*t *x - 48*df(u,x)*t *x
- 3 2 2 4
- - 8*df(u,x)*t*x - 12*t - 12*t*x - x
- -------- 17. Symmetry:
- xi_t=0
- xi_x=0
- 2 3 2 3
- eta_u= - 12*df(u,t,x)*t *x - 8*df(u,t,2)*t - 8*df(u,t) *t
- 2 2 3
- - 12*df(u,t)*df(u,x)*t *x - 6*df(u,t)*t*x + 6*df(u,x)*t*x - df(u,x)*x + 6*t
- 2
- + 3*x
- -------- 18. Symmetry:
- xi_t=0
- xi_x=0
- 2
- eta_u= - df(u,t,x)*x - 2*df(u,t,2)*t - 2*df(u,t) *t - df(u,t)*df(u,x)*x
- -------- 19. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=df(u,t,x) + df(u,t)*df(u,x)
- -------- 20. Symmetry:
- xi_t=0
- xi_x=0
- 2 2
- eta_u= - 4*df(u,t,x)*t - 4*df(u,t)*df(u,x)*t - 4*df(u,t)*t*x + 2*df(u,x)*t
- 2
- - df(u,x)*x + 2*x
- -------- 21. Symmetry:
- xi_t=0
- xi_x=0
- 3 3 2 2
- eta_u= - 8*df(u,t,x)*t - 8*df(u,t)*df(u,x)*t - 12*df(u,t)*t *x - 12*df(u,x)*t
- 2 3
- - 6*df(u,x)*t*x - 6*t*x - x
- -------- 22. Symmetry:
- xi_t=0
- xi_x=0
- eta_u= - 4*df(u,t,x)*t - 4*df(u,t)*df(u,x)*t - 2*df(u,t)*x + df(u,x)
- -------- 23. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=df(u,t)
- -------- 24. Symmetry:
- xi_t=0
- xi_x=0
- 2 2
- eta_u= - 4*df(u,t)*t - 4*df(u,x)*t*x - 2*t - x
- -------- 25. Symmetry:
- xi_t=0
- xi_x=0
- eta_u= - 2*df(u,t)*t - df(u,x)*x + 1
- -------- 26. Symmetry:
- xi_t=0
- xi_x=0
- eta_u= - 2*df(u,x)*t - x
- -------- 27. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=df(u,x)
- -------- 28. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=1
- --------
- Further symmetries:
- xi_t=0
- xi_x=0
- c_92
- eta_u=------
- u
- e
- with c_92(x,t)
- which still have to satisfy:
- 0=df(c_92,t) - df(c_92,x,2)
- -------------------------------------------------------
- The following example includes the Karpman equations
- for three unknown functions in 4 variables.
- If point symmetries are to be computed for a single
- equation or a system of equations of higher than first
- order then there is the option to formulate at first
- preliminary conditions for each equation, have CRACK
- solving these conditions before the full set of conditions
- is formulated and solved. This strategy is adopted if a
- lisp flag prelim_ has the value t. The default value
- is nil.
- Similarly, if a system of equations is to be investigated
- and a flag individual_ has the value t then symmetry
- conditions are formulated and investigated for each
- individual equation successively. The default value is nil.
- It is advantageous to split a large set of conditions
- into smaller sets to be investigated successively if
- each set is sufficiently overdetermined to be solvable
- quickly. Then any substitutions are done in the smaller
- set and the next set of conditions is shorter. For
- example, for the Karpman equations below the speedup for
- prelim_:=t; individual_:=t; is a factor of 10.
- (Time ~ 1 min.)
- -------------------------------------------------------
- Time: 41810 ms plus GC time: 2430 ms
- The PDE-system under investigation is :
- 2 2 2 2 2
- df(v,x,2)=( - 4*df(f,t)*a2*r - 2*df(f,x) *a2*r *s1 - 2*df(f,y) *a2*r *s1
- 2 2 2 2
- - 2*df(f,z) *a2*r *s2 - 4*df(f,z)*a2*r *w1 - 2*df(r,x) *a2*s1
- 2
- - 2*df(r,y) *a2*s1 - 2*df(r,z,2)*a2*r*s1 + 2*df(r,z,2)*a2*r*s2
- 2 2
- - 2*df(r,z) *a2*s1 + df(v,t,2)*s1 - df(v,y,2)*s1*w2
- 2 2 2
- - df(v,z,2)*s1*w2 - 4*a1*a2*r *v)/(s1*w2 )
- 2 2 2
- df(r,x,2)=(2*df(f,t)*r + df(f,x) *r*s1 + df(f,y) *r*s1 + df(f,z) *r*s2
- + 2*df(f,z)*r*w1 - df(r,y,2)*s1 - df(r,z,2)*s2 + 2*a1*r*v)/s1
- df(f,x,2)=( - 2*df(f,x)*df(r,x)*s1 - df(f,y,2)*r*s1 - 2*df(f,y)*df(r,y)*s1
- - df(f,z,2)*r*s2 - 2*df(f,z)*df(r,z)*s2 - 2*df(r,t) - 2*df(r,z)*w1)/
- (r*s1)
- for the function(s) :
- r(t,z,y,x), f(t,z,y,x), v(t,z,y,x)
- =============== Initializations
- time for initializations: 340 ms GC time : 40 ms
- =============== Preconditions for the 1. equation
- time to formulate conditions: 2180 ms GC time : 90 ms
- CRACK needed : 5550 ms GC time : 420 ms
- =============== Preconditions for the 2. equation
- =============== Preconditions for the 3. equation
- time to formulate conditions: 800 ms GC time : 50 ms
- CRACK needed : 1270 ms GC time : 100 ms
- =============== Full conditions for the 1. equation
- time to formulate conditions: 510 ms GC time : 50 ms
- CRACK needed : 11880 ms GC time : 870 ms
- =============== Full conditions for the 2. equation
- time to formulate conditions: 170 ms GC time : 0 ms
- CRACK needed : 520 ms GC time : 50 ms
- =============== Full conditions for the 3. equation
- time to formulate conditions: 260 ms GC time : 0 ms
- CRACK needed : 680 ms GC time : 60 ms
- The symmetries are:
- -------- 1. Symmetry:
- xi_x=0
- xi_y=0
- xi_z=0
- xi_t=0
- eta_r=0
- - t
- eta_f=-------
- s1*s2
- 1
- eta_v=----------
- a1*s1*s2
- -------- 2. Symmetry:
- xi_x=0
- xi_y=0
- xi_z=0
- xi_t=0
- eta_r=0
- 2
- - t
- eta_f=-------
- s1*s2
- 2*t
- eta_v=----------
- a1*s1*s2
- -------- 3. Symmetry:
- xi_x=0
- xi_y=0
- xi_z=0
- xi_t=0
- eta_r=0
- 1
- eta_f=-------
- s1*s2
- eta_v=0
- -------- 4. Symmetry:
- xi_x=0
- xi_y=0
- xi_z=0
- xi_t=1
- eta_r=0
- eta_f=0
- eta_v=0
- -------- 5. Symmetry:
- xi_x=0
- xi_y=0
- 1
- xi_z=----
- s1
- xi_t=0
- eta_r=0
- - w1
- eta_f=-------
- s1*s2
- eta_v=0
- -------- 6. Symmetry:
- xi_x=0
- 1
- xi_y=-------
- s1*s2
- xi_z=0
- xi_t=0
- eta_r=0
- eta_f=0
- eta_v=0
- -------- 7. Symmetry:
- y
- xi_x=-------
- s1*s2
- - x
- xi_y=-------
- s1*s2
- xi_z=0
- xi_t=0
- eta_r=0
- eta_f=0
- eta_v=0
- -------- 8. Symmetry:
- 1
- xi_x=-------
- s1*s2
- xi_y=0
- xi_z=0
- xi_t=0
- eta_r=0
- eta_f=0
- eta_v=0
- --------
- Time: 23830 ms plus GC time: 1840 ms
- -------------------------------------------------------
- In the following example a system of two equations (by
- V.Sokolov) is investigated concerning a special ansatz for
- 4th order symmetries. The ansatz for the symmetries includes
- two unknown functions f,g. Because x is the second variable
- in the list of variables {t,x}, the name u!`2 stands for
- df(u,x).
- Because higher order symmetries are investigated we have
- to set prelim_:=nil. The symmetries to be calculated are
- lengthy and therefore conditions are not very overdetermined.
- In that case CRACK can take long to solve a single
- subset of conditions. The complete set of conditions would
- have been more overdetermined and easier to solve. Therefore
- the advantage of first formulating all conditions and then
- solving them together with one CRACK call is that having
- more equations, the chance of finding short integrable
- equations among then is higher, i.e. CRACK has more freedom
- in optimizing the computation. Therefore individual_:=nil
- is more appropriate in this example.
- Because 4th order conditions are to be computed the
- `binding stack size' is increased.
- (Time ~ 5 min.)
- -------------------------------------------------------
- The PDE-system under investigation is :
- df(u,t)=df(u,x,2) + df(u,x)*u + df(u,x)*v + df(v,x)*u
- df(v,t)=df(u,x)*v - df(v,x,2) + df(v,x)*u + df(v,x)*v
- for the function(s) :
- u(t,x), v(t,x)
- The symmetries are:
- -------- 1. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
- 2
- + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
- 2 2 2
- + 3*df(u,x,2)*v + 2*df(u,x,2) + 6*df(u,x) *u + 9*df(u,x) *v
- + 4*df(u,x)*df(v,x,2) + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v
- 3 2 2
- + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v + 2*df(u,x)*u
- 3 3
- + df(u,x)*v + 2*df(u,x)*v + 2*df(v,x,3)*u + 3*df(v,x)*u
- 2 2
- + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 2*df(v,x)*u)/2
- eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
- 2
- - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 3*df(u,x)*u *v
- 2 3
- + 9*df(u,x)*u*v + 3*df(u,x)*v + 2*df(u,x)*v - 2*df(v,x,4)
- 2
- + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u
- 2 2
- - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 2*df(v,x,2) - 9*df(v,x) *u
- 2 3 2 2
- - 6*df(v,x) *v + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v
- 3
- + 2*df(v,x)*u + df(v,x)*v + 2*df(v,x)*v)/2
- -------- 2. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
- 2
- + 6*df(u,x,2)*df(v,x) + 4*df(u,x,2)*t + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
- 2 2 2
- + 3*df(u,x,2)*v + 6*df(u,x) *u + 9*df(u,x) *v + 4*df(u,x)*df(v,x,2)
- + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + 4*df(u,x)*t*u
- 3 2 2
- + 4*df(u,x)*t*v + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v
- 3
- + df(u,x)*v + 2*df(u,x)*x + 2*df(v,x,3)*u + 4*df(v,x)*t*u
- 3 2 2
- + 3*df(v,x)*u + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 2*u)/2
- eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
- - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 4*df(u,x)*t*v
- 2 2 3
- + 3*df(u,x)*u *v + 9*df(u,x)*u*v + 3*df(u,x)*v - 2*df(v,x,4)
- + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 4*df(v,x,2)*t
- 2 2 2
- - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 9*df(v,x) *u
- 2 3
- - 6*df(v,x) *v + 4*df(v,x)*t*u + 4*df(v,x)*t*v + df(v,x)*u
- 2 2 3
- + 9*df(v,x)*u *v + 9*df(v,x)*u*v + df(v,x)*v + 2*df(v,x)*x + 2*v)/2
- -------- 3. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 8*df(u,x,3)
- 2
- + 10*df(u,x,2)*df(u,x) + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u
- 2
- + 9*df(u,x,2)*u*v + 12*df(u,x,2)*u + 3*df(u,x,2)*v + 12*df(u,x,2)*v
- 2 2 2
- + 6*df(u,x) *u + 9*df(u,x) *v + 12*df(u,x) + 4*df(u,x)*df(v,x,2)
- + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + 12*df(u,x)*df(v,x)
- 3 2 2 2
- + df(u,x)*u + 9*df(u,x)*u *v + 6*df(u,x)*u + 9*df(u,x)*u*v
- 3 2
- + 24*df(u,x)*u*v + df(u,x)*v + 6*df(u,x)*v + 2*df(v,x,3)*u
- 3 2 2 2
- + 3*df(v,x)*u + 9*df(v,x)*u *v + 12*df(v,x)*u + 3*df(v,x)*u*v
- + 12*df(v,x)*u*v)/2
- eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
- - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v - 12*df(u,x)*df(v,x)
- 2 2 3
- + 3*df(u,x)*u *v + 9*df(u,x)*u*v + 12*df(u,x)*u*v + 3*df(u,x)*v
- 2
- + 12*df(u,x)*v - 2*df(v,x,4) + 4*df(v,x,3)*u + 4*df(v,x,3)*v
- 2
- + 8*df(v,x,3) + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v
- 2 2
- - 12*df(v,x,2)*u - 3*df(v,x,2)*v - 12*df(v,x,2)*v - 9*df(v,x) *u
- 2 2 3 2
- - 6*df(v,x) *v - 12*df(v,x) + df(v,x)*u + 9*df(v,x)*u *v
- 2 2 3
- + 6*df(v,x)*u + 9*df(v,x)*u*v + 24*df(v,x)*u*v + df(v,x)*v
- 2
- + 6*df(v,x)*v )/2
- -------- 4. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=(2*df(u,x,4) + 8*df(u,x,3)*t + 4*df(u,x,3)*u + 4*df(u,x,3)*v
- + 10*df(u,x,2)*df(u,x) + 6*df(u,x,2)*df(v,x) + 12*df(u,x,2)*t*u
- 2 2
- + 12*df(u,x,2)*t*v + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v + 3*df(u,x,2)*v
- 2 2 2
- + 4*df(u,x,2)*x + 12*df(u,x) *t + 6*df(u,x) *u + 9*df(u,x) *v
- + 4*df(u,x)*df(v,x,2) + 12*df(u,x)*df(v,x)*t + 9*df(u,x)*df(v,x)*u
- 2
- + 6*df(u,x)*df(v,x)*v + 6*df(u,x)*t*u + 24*df(u,x)*t*u*v
- 2 3 2 2
- + 6*df(u,x)*t*v + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v
- 3
- + 4*df(u,x)*u*x + df(u,x)*v + 4*df(u,x)*v*x + 16*df(u,x)
- 2 3
- + 2*df(v,x,3)*u + 12*df(v,x)*t*u + 12*df(v,x)*t*u*v + 3*df(v,x)*u
- 2 2 2
- + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 4*df(v,x)*u*x + 2*u + 6*u*v)/2
- eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
- - 12*df(u,x)*df(v,x)*t - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v
- 2 2 2
- + 12*df(u,x)*t*u*v + 12*df(u,x)*t*v + 3*df(u,x)*u *v + 9*df(u,x)*u*v
- 3
- + 3*df(u,x)*v + 4*df(u,x)*v*x - 2*df(v,x,4) + 8*df(v,x,3)*t
- + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x)
- 2
- - 12*df(v,x,2)*t*u - 12*df(v,x,2)*t*v - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v
- 2 2 2
- - 3*df(v,x,2)*v - 4*df(v,x,2)*x - 12*df(v,x) *t - 9*df(v,x) *u
- 2 2 2
- - 6*df(v,x) *v + 6*df(v,x)*t*u + 24*df(v,x)*t*u*v + 6*df(v,x)*t*v
- 3 2 2
- + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v + 4*df(v,x)*u*x
- 3 2
- + df(v,x)*v + 4*df(v,x)*v*x + 6*u*v + 2*v )/2
- -------- 5. Symmetry:
- xi_t=0
- xi_x=0
- eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
- 2
- + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
- 2 2 2
- + 3*df(u,x,2)*v + 6*df(u,x) *u + 9*df(u,x) *v + 4*df(u,x)*df(v,x,2)
- 3
- + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + df(u,x)*u
- 2 2 3
- + 9*df(u,x)*u *v + 9*df(u,x)*u*v + df(u,x)*v + 2*df(u,x)
- 3 2 2
- + 2*df(v,x,3)*u + 3*df(v,x)*u + 9*df(v,x)*u *v + 3*df(v,x)*u*v )/2
- eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
- 2
- - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 3*df(u,x)*u *v
- 2 3
- + 9*df(u,x)*u*v + 3*df(u,x)*v - 2*df(v,x,4) + 4*df(v,x,3)*u
- 2
- + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u
- 2 2 2
- - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 9*df(v,x) *u - 6*df(v,x) *v
- 3 2 2 3
- + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v + df(v,x)*v + 2*df(v,x))
- /2
- --------
- 4: 4: 4: 4: 4: 4: 4: 4: 4:
- Time for test: 141150 ms, plus GC time: 10660 ms
- 5: 5:
- Quitting
- Sun Jan 3 23:54:19 MET 1999
|