liepde.rlg 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172
  1. Sun Jan 3 23:51:41 MET 1999
  2. REDUCE 3.7, 15-Jan-99 ...
  3. 1: 1:
  4. 2: 2: 2: 2: 2: 2: 2: 2: 2:
  5. 3: 3: off echo, dfprint$
  6. -------------------------------------------------------
  7. The following runs demonstrate the program LIEPDE for the
  8. computation of infinitesimal symmetries. Times given
  9. below refer to a 8 MB session under LINUX on a 133 MHz
  10. Pentium PC with the CRACK version of April 1998.
  11. -------------------------------------------------------
  12. The first example is a single ODE with a parametric
  13. function f=f(x) for which point symmetries are to be
  14. determined.
  15. (Time ~ 6 sec.)
  16. -------------------------------------------------------
  17. The ODE under investigation is :
  18. 2 2 3
  19. df(y,x,2)= - df(f,x)*y - 3*df(y,x)*f - df(y,x)*y - 2*f *y - f*y + y
  20. for the function(s) :
  21. y(x)
  22. The symmetries are:
  23. -------- 1. Symmetry:
  24. int(f,x) 1
  25. xi_x=e *int(-----------,x)
  26. int(f,x)
  27. e
  28. int(f,x) 1
  29. eta_y= - e *int(-----------,x)*f*y - y
  30. int(f,x)
  31. e
  32. -------- 2. Symmetry:
  33. int(f,x)
  34. xi_x= - e
  35. int(f,x)
  36. eta_y=e *f*y
  37. --------
  38. -------------------------------------------------------
  39. The following example demonstrates a number of things.
  40. The Burgers equation is investigated concerning third
  41. order symmetries. The equation is used to substitute
  42. df(u,t) and all derivatives of df(u,t). This computation
  43. also shows that any equations that remain unsolved are
  44. returned, like in this case the heat quation.
  45. (Time ~ 15 sec.)
  46. -------------------------------------------------------
  47. The PDE under investigation is :
  48. 2
  49. df(u,t)=df(u,x,2) + df(u,x)
  50. for the function(s) :
  51. u(x,t)
  52. The symmetries are:
  53. -------- 1. Symmetry:
  54. xi_t=0
  55. xi_x=0
  56. 2
  57. eta_u=df(u,x,2) + df(u,x)
  58. -------- 2. Symmetry:
  59. xi_t=0
  60. xi_x=0
  61. 2 2 2 2
  62. eta_u=4*df(u,x,2)*t + 4*df(u,x) *t + 4*df(u,x)*t*x + 2*t + x
  63. -------- 3. Symmetry:
  64. xi_t=0
  65. xi_x=0
  66. 2
  67. eta_u=4*df(u,x,2)*t + 4*df(u,x) *t + 2*df(u,x)*x - 1
  68. -------- 4. Symmetry:
  69. xi_t=0
  70. xi_x=0
  71. 3
  72. eta_u=df(u,x,3) + 3*df(u,x,2)*df(u,x) + df(u,x)
  73. -------- 5. Symmetry:
  74. xi_t=0
  75. xi_x=0
  76. 2 2 3 2
  77. eta_u=4*df(u,x,3)*t + 12*df(u,x,2)*df(u,x)*t + 4*df(u,x,2)*t*x + 4*df(u,x) *t
  78. 2 2
  79. + 4*df(u,x) *t*x + df(u,x)*x - x
  80. -------- 6. Symmetry:
  81. xi_t=0
  82. xi_x=0
  83. 3 3 2
  84. eta_u=8*df(u,x,3)*t + 24*df(u,x,2)*df(u,x)*t + 12*df(u,x,2)*t *x
  85. 3 3 2 2 2 2
  86. + 8*df(u,x) *t + 12*df(u,x) *t *x + 12*df(u,x)*t + 6*df(u,x)*t*x + 6*t*x
  87. 3
  88. + x
  89. -------- 7. Symmetry:
  90. xi_t=0
  91. xi_x=0
  92. eta_u
  93. 3 2
  94. =2*df(u,x,3)*t + 6*df(u,x,2)*df(u,x)*t + df(u,x,2)*x + 2*df(u,x) *t + df(u,x) *x
  95. -------- 8. Symmetry:
  96. xi_t=0
  97. xi_x=0
  98. eta_u=df(u,x)
  99. -------- 9. Symmetry:
  100. xi_t=0
  101. xi_x=0
  102. eta_u=2*df(u,x)*t + x
  103. -------- 10. Symmetry:
  104. xi_t=0
  105. xi_x=0
  106. eta_u=1
  107. --------
  108. Further symmetries:
  109. xi_t=0
  110. xi_x=0
  111. c_27 + c_32
  112. eta_u=-------------
  113. u
  114. e
  115. with c_27(x,t), c_32(t)
  116. which still have to satisfy:
  117. 0=2*df( - c_27,t) - 2*df( - c_27,x,2) + df( - 2*c_32,t)
  118. -------------------------------------------------------
  119. Now the same equation is investigated, this time only
  120. df(u,x,2) and its derivatives are substituted. As a
  121. consequence less jet-variables (u-derivatives of lower
  122. order) are generated in the process of formulating the
  123. symmetry conditions. Less jet-variables in which the
  124. conditions have to be fulfilled identically means less
  125. overdetermined conditions and more solutions which to
  126. compute takes longer than before.
  127. (Time ~ 85 sec.)
  128. -------------------------------------------------------
  129. The PDE under investigation is :
  130. 2
  131. df(u,x,2)=df(u,t) - df(u,x)
  132. for the function(s) :
  133. u(x,t)
  134. The symmetries are:
  135. -------- 1. Symmetry:
  136. xi_t=0
  137. xi_x=0
  138. eta_u
  139. 2
  140. = - 2*df(u,t,x)*df(u,t) - df(u,t,2,x) - df(u,t,2)*df(u,x) - df(u,t) *df(u,x)
  141. -------- 2. Symmetry:
  142. xi_t=0
  143. xi_x=0
  144. 2 2 2
  145. eta_u= - 16*df(u,t,x)*df(u,t)*t - 2*df(u,t,x)*x - 8*df(u,t,2,x)*t
  146. 2 2 2
  147. - 8*df(u,t,2)*df(u,x)*t - 8*df(u,t,2)*t*x - 8*df(u,t) *df(u,x)*t
  148. 2 2
  149. - 8*df(u,t) *t*x - 2*df(u,t)*df(u,x)*x + 2*df(u,t)*x - df(u,x)
  150. -------- 3. Symmetry:
  151. xi_t=0
  152. xi_x=0
  153. 4 2 2 4
  154. eta_u= - 32*df(u,t,x)*df(u,t)*t - 24*df(u,t,x)*t *x - 16*df(u,t,2,x)*t
  155. 4 3 2 4
  156. - 16*df(u,t,2)*df(u,x)*t - 32*df(u,t,2)*t *x - 16*df(u,t) *df(u,x)*t
  157. 2 3 2 2 2
  158. - 32*df(u,t) *t *x - 24*df(u,t)*df(u,x)*t *x + 24*df(u,t)*t *x
  159. 3 2 2 4 3
  160. - 8*df(u,t)*t*x + 60*df(u,x)*t + 24*df(u,x)*t*x - df(u,x)*x + 36*t*x + 6*x
  161. -------- 4. Symmetry:
  162. xi_t=0
  163. xi_x=0
  164. 5 4 3 2
  165. eta_u= - 64*df(u,t,x)*df(u,t)*t - 160*df(u,t,x)*t - 80*df(u,t,x)*t *x
  166. 5 5 4
  167. - 32*df(u,t,2,x)*t - 32*df(u,t,2)*df(u,x)*t - 80*df(u,t,2)*t *x
  168. 2 5 2 4 4
  169. - 32*df(u,t) *df(u,x)*t - 80*df(u,t) *t *x - 160*df(u,t)*df(u,x)*t
  170. 3 2 3 2 3
  171. - 80*df(u,t)*df(u,x)*t *x - 240*df(u,t)*t *x - 40*df(u,t)*t *x
  172. 3 2 2 4 2 3 5
  173. - 120*df(u,x)*t - 120*df(u,x)*t *x - 10*df(u,x)*t*x - 60*t *x - 20*t*x - x
  174. -------- 5. Symmetry:
  175. xi_t=0
  176. xi_x=0
  177. 3 2 3
  178. eta_u= - 32*df(u,t,x)*df(u,t)*t - 12*df(u,t,x)*t*x - 16*df(u,t,2,x)*t
  179. 3 2 2 3
  180. - 16*df(u,t,2)*df(u,x)*t - 24*df(u,t,2)*t *x - 16*df(u,t) *df(u,x)*t
  181. 2 2 2 3
  182. - 24*df(u,t) *t *x - 12*df(u,t)*df(u,x)*t*x + 12*df(u,t)*t*x - 2*df(u,t)*x
  183. 2
  184. - 6*df(u,x)*t + 6*df(u,x)*x - 9*x
  185. -------- 6. Symmetry:
  186. xi_t=0
  187. xi_x=0
  188. eta_u= - 4*df(u,t,x)*df(u,t)*t - 2*df(u,t,2,x)*t - 2*df(u,t,2)*df(u,x)*t
  189. 2 2
  190. - df(u,t,2)*x - 2*df(u,t) *df(u,x)*t - df(u,t) *x
  191. -------- 7. Symmetry:
  192. xi_t=0
  193. xi_x=0
  194. 3
  195. eta_u= - df(u,t,3) - 3*df(u,t,2)*df(u,t) - df(u,t)
  196. -------- 8. Symmetry:
  197. xi_t=0
  198. xi_x=0
  199. 2
  200. eta_u= - 8*df(u,t,x)*df(u,t)*t*x + df(u,t,x)*x - 4*df(u,t,3)*t
  201. 2
  202. - 4*df(u,t,2,x)*t*x - 12*df(u,t,2)*df(u,t)*t - 4*df(u,t,2)*df(u,x)*t*x
  203. 2 3 2 2 2 2
  204. - df(u,t,2)*x - 4*df(u,t) *t - 4*df(u,t) *df(u,x)*t*x - df(u,t) *x
  205. + df(u,t)*df(u,x)*x
  206. -------- 9. Symmetry:
  207. xi_t=0
  208. xi_x=0
  209. 3 2 3
  210. eta_u= - 64*df(u,t,x)*df(u,t)*t *x + 24*df(u,t,x)*t *x - 8*df(u,t,x)*t*x
  211. 4 3 4
  212. - 16*df(u,t,3)*t - 32*df(u,t,2,x)*t *x - 48*df(u,t,2)*df(u,t)*t
  213. 3 2 2 3 4
  214. - 32*df(u,t,2)*df(u,x)*t *x - 24*df(u,t,2)*t *x - 16*df(u,t) *t
  215. 2 3 2 2 2 2
  216. - 32*df(u,t) *df(u,x)*t *x - 24*df(u,t) *t *x + 24*df(u,t)*df(u,x)*t *x
  217. 3 2 4
  218. - 8*df(u,t)*df(u,x)*t*x + 24*df(u,t)*t*x - df(u,t)*x - 24*df(u,x)*t*x
  219. 3 2
  220. + 6*df(u,x)*x - 30*t - 15*x
  221. -------- 10. Symmetry:
  222. xi_t=0
  223. xi_x=0
  224. 5 4 3 3
  225. eta_u= - 384*df(u,t,x)*df(u,t)*t *x - 960*df(u,t,x)*t *x - 160*df(u,t,x)*t *x
  226. 6 5 6
  227. - 64*df(u,t,3)*t - 192*df(u,t,2,x)*t *x - 192*df(u,t,2)*df(u,t)*t
  228. 5 5 4 2
  229. - 192*df(u,t,2)*df(u,x)*t *x - 480*df(u,t,2)*t - 240*df(u,t,2)*t *x
  230. 3 6 2 5 2 5
  231. - 64*df(u,t) *t - 192*df(u,t) *df(u,x)*t *x - 480*df(u,t) *t
  232. 2 4 2 4 3 3
  233. - 240*df(u,t) *t *x - 960*df(u,t)*df(u,x)*t *x - 160*df(u,t)*df(u,x)*t *x
  234. 4 3 2 2 4 3
  235. - 720*df(u,t)*t - 720*df(u,t)*t *x - 60*df(u,t)*t *x - 720*df(u,x)*t *x
  236. 2 3 5 3 2 2 4 6
  237. - 240*df(u,x)*t *x - 12*df(u,x)*t*x - 120*t - 180*t *x - 30*t*x - x
  238. -------- 11. Symmetry:
  239. xi_t=0
  240. xi_x=0
  241. 4 3 2 3
  242. eta_u= - 160*df(u,t,x)*df(u,t)*t *x + 80*df(u,t,x)*t *x - 40*df(u,t,x)*t *x
  243. 5 4 5
  244. - 32*df(u,t,3)*t - 80*df(u,t,2,x)*t *x - 96*df(u,t,2)*df(u,t)*t
  245. 4 3 2 3 5
  246. - 80*df(u,t,2)*df(u,x)*t *x - 80*df(u,t,2)*t *x - 32*df(u,t) *t
  247. 2 4 2 3 2 3
  248. - 80*df(u,t) *df(u,x)*t *x - 80*df(u,t) *t *x + 80*df(u,t)*df(u,x)*t *x
  249. 2 3 3 2 2
  250. - 40*df(u,t)*df(u,x)*t *x + 360*df(u,t)*t + 120*df(u,t)*t *x
  251. 4 2 3 5 2
  252. - 10*df(u,t)*t*x + 420*df(u,x)*t *x + 60*df(u,x)*t*x - df(u,x)*x + 120*t
  253. 2 4
  254. + 120*t*x + 10*x
  255. -------- 12. Symmetry:
  256. xi_t=0
  257. xi_x=0
  258. 2 3
  259. eta_u= - 48*df(u,t,x)*df(u,t)*t *x + 12*df(u,t,x)*t*x - 2*df(u,t,x)*x
  260. 3 2 3
  261. - 16*df(u,t,3)*t - 24*df(u,t,2,x)*t *x - 48*df(u,t,2)*df(u,t)*t
  262. 2 2 3 3
  263. - 24*df(u,t,2)*df(u,x)*t *x - 12*df(u,t,2)*t*x - 16*df(u,t) *t
  264. 2 2 2 2
  265. - 24*df(u,t) *df(u,x)*t *x - 12*df(u,t) *t*x + 12*df(u,t)*df(u,x)*t*x
  266. 3 2
  267. - 2*df(u,t)*df(u,x)*x + 6*df(u,t)*x - 6*df(u,x)*x + 3
  268. -------- 13. Symmetry:
  269. xi_t=0
  270. xi_x=0
  271. eta_u= - 2*df(u,t,x)*df(u,t)*x - 2*df(u,t,3)*t - df(u,t,2,x)*x
  272. 3
  273. - 6*df(u,t,2)*df(u,t)*t - df(u,t,2)*df(u,x)*x - 2*df(u,t) *t
  274. 2
  275. - df(u,t) *df(u,x)*x
  276. -------- 14. Symmetry:
  277. xi_t=0
  278. xi_x=0
  279. 2
  280. eta_u=df(u,t,2) + df(u,t)
  281. -------- 15. Symmetry:
  282. xi_t=0
  283. xi_x=0
  284. 2 2 2
  285. eta_u= - 8*df(u,t,x)*t*x - 8*df(u,t,2)*t - 8*df(u,t) *t
  286. 2
  287. - 8*df(u,t)*df(u,x)*t*x - 2*df(u,t)*x + 2*df(u,x)*x - 1
  288. -------- 16. Symmetry:
  289. xi_t=0
  290. xi_x=0
  291. 3 4 2 4
  292. eta_u= - 32*df(u,t,x)*t *x - 16*df(u,t,2)*t - 16*df(u,t) *t
  293. 3 3 2 2 2
  294. - 32*df(u,t)*df(u,x)*t *x - 48*df(u,t)*t - 24*df(u,t)*t *x - 48*df(u,x)*t *x
  295. 3 2 2 4
  296. - 8*df(u,x)*t*x - 12*t - 12*t*x - x
  297. -------- 17. Symmetry:
  298. xi_t=0
  299. xi_x=0
  300. 2 3 2 3
  301. eta_u= - 12*df(u,t,x)*t *x - 8*df(u,t,2)*t - 8*df(u,t) *t
  302. 2 2 3
  303. - 12*df(u,t)*df(u,x)*t *x - 6*df(u,t)*t*x + 6*df(u,x)*t*x - df(u,x)*x + 6*t
  304. 2
  305. + 3*x
  306. -------- 18. Symmetry:
  307. xi_t=0
  308. xi_x=0
  309. 2
  310. eta_u= - df(u,t,x)*x - 2*df(u,t,2)*t - 2*df(u,t) *t - df(u,t)*df(u,x)*x
  311. -------- 19. Symmetry:
  312. xi_t=0
  313. xi_x=0
  314. eta_u=df(u,t,x) + df(u,t)*df(u,x)
  315. -------- 20. Symmetry:
  316. xi_t=0
  317. xi_x=0
  318. 2 2
  319. eta_u= - 4*df(u,t,x)*t - 4*df(u,t)*df(u,x)*t - 4*df(u,t)*t*x + 2*df(u,x)*t
  320. 2
  321. - df(u,x)*x + 2*x
  322. -------- 21. Symmetry:
  323. xi_t=0
  324. xi_x=0
  325. 3 3 2 2
  326. eta_u= - 8*df(u,t,x)*t - 8*df(u,t)*df(u,x)*t - 12*df(u,t)*t *x - 12*df(u,x)*t
  327. 2 3
  328. - 6*df(u,x)*t*x - 6*t*x - x
  329. -------- 22. Symmetry:
  330. xi_t=0
  331. xi_x=0
  332. eta_u= - 4*df(u,t,x)*t - 4*df(u,t)*df(u,x)*t - 2*df(u,t)*x + df(u,x)
  333. -------- 23. Symmetry:
  334. xi_t=0
  335. xi_x=0
  336. eta_u=df(u,t)
  337. -------- 24. Symmetry:
  338. xi_t=0
  339. xi_x=0
  340. 2 2
  341. eta_u= - 4*df(u,t)*t - 4*df(u,x)*t*x - 2*t - x
  342. -------- 25. Symmetry:
  343. xi_t=0
  344. xi_x=0
  345. eta_u= - 2*df(u,t)*t - df(u,x)*x + 1
  346. -------- 26. Symmetry:
  347. xi_t=0
  348. xi_x=0
  349. eta_u= - 2*df(u,x)*t - x
  350. -------- 27. Symmetry:
  351. xi_t=0
  352. xi_x=0
  353. eta_u=df(u,x)
  354. -------- 28. Symmetry:
  355. xi_t=0
  356. xi_x=0
  357. eta_u=1
  358. --------
  359. Further symmetries:
  360. xi_t=0
  361. xi_x=0
  362. c_92
  363. eta_u=------
  364. u
  365. e
  366. with c_92(x,t)
  367. which still have to satisfy:
  368. 0=df(c_92,t) - df(c_92,x,2)
  369. -------------------------------------------------------
  370. The following example includes the Karpman equations
  371. for three unknown functions in 4 variables.
  372. If point symmetries are to be computed for a single
  373. equation or a system of equations of higher than first
  374. order then there is the option to formulate at first
  375. preliminary conditions for each equation, have CRACK
  376. solving these conditions before the full set of conditions
  377. is formulated and solved. This strategy is adopted if a
  378. lisp flag prelim_ has the value t. The default value
  379. is nil.
  380. Similarly, if a system of equations is to be investigated
  381. and a flag individual_ has the value t then symmetry
  382. conditions are formulated and investigated for each
  383. individual equation successively. The default value is nil.
  384. It is advantageous to split a large set of conditions
  385. into smaller sets to be investigated successively if
  386. each set is sufficiently overdetermined to be solvable
  387. quickly. Then any substitutions are done in the smaller
  388. set and the next set of conditions is shorter. For
  389. example, for the Karpman equations below the speedup for
  390. prelim_:=t; individual_:=t; is a factor of 10.
  391. (Time ~ 1 min.)
  392. -------------------------------------------------------
  393. Time: 41810 ms plus GC time: 2430 ms
  394. The PDE-system under investigation is :
  395. 2 2 2 2 2
  396. df(v,x,2)=( - 4*df(f,t)*a2*r - 2*df(f,x) *a2*r *s1 - 2*df(f,y) *a2*r *s1
  397. 2 2 2 2
  398. - 2*df(f,z) *a2*r *s2 - 4*df(f,z)*a2*r *w1 - 2*df(r,x) *a2*s1
  399. 2
  400. - 2*df(r,y) *a2*s1 - 2*df(r,z,2)*a2*r*s1 + 2*df(r,z,2)*a2*r*s2
  401. 2 2
  402. - 2*df(r,z) *a2*s1 + df(v,t,2)*s1 - df(v,y,2)*s1*w2
  403. 2 2 2
  404. - df(v,z,2)*s1*w2 - 4*a1*a2*r *v)/(s1*w2 )
  405. 2 2 2
  406. df(r,x,2)=(2*df(f,t)*r + df(f,x) *r*s1 + df(f,y) *r*s1 + df(f,z) *r*s2
  407. + 2*df(f,z)*r*w1 - df(r,y,2)*s1 - df(r,z,2)*s2 + 2*a1*r*v)/s1
  408. df(f,x,2)=( - 2*df(f,x)*df(r,x)*s1 - df(f,y,2)*r*s1 - 2*df(f,y)*df(r,y)*s1
  409. - df(f,z,2)*r*s2 - 2*df(f,z)*df(r,z)*s2 - 2*df(r,t) - 2*df(r,z)*w1)/
  410. (r*s1)
  411. for the function(s) :
  412. r(t,z,y,x), f(t,z,y,x), v(t,z,y,x)
  413. =============== Initializations
  414. time for initializations: 340 ms GC time : 40 ms
  415. =============== Preconditions for the 1. equation
  416. time to formulate conditions: 2180 ms GC time : 90 ms
  417. CRACK needed : 5550 ms GC time : 420 ms
  418. =============== Preconditions for the 2. equation
  419. =============== Preconditions for the 3. equation
  420. time to formulate conditions: 800 ms GC time : 50 ms
  421. CRACK needed : 1270 ms GC time : 100 ms
  422. =============== Full conditions for the 1. equation
  423. time to formulate conditions: 510 ms GC time : 50 ms
  424. CRACK needed : 11880 ms GC time : 870 ms
  425. =============== Full conditions for the 2. equation
  426. time to formulate conditions: 170 ms GC time : 0 ms
  427. CRACK needed : 520 ms GC time : 50 ms
  428. =============== Full conditions for the 3. equation
  429. time to formulate conditions: 260 ms GC time : 0 ms
  430. CRACK needed : 680 ms GC time : 60 ms
  431. The symmetries are:
  432. -------- 1. Symmetry:
  433. xi_x=0
  434. xi_y=0
  435. xi_z=0
  436. xi_t=0
  437. eta_r=0
  438. - t
  439. eta_f=-------
  440. s1*s2
  441. 1
  442. eta_v=----------
  443. a1*s1*s2
  444. -------- 2. Symmetry:
  445. xi_x=0
  446. xi_y=0
  447. xi_z=0
  448. xi_t=0
  449. eta_r=0
  450. 2
  451. - t
  452. eta_f=-------
  453. s1*s2
  454. 2*t
  455. eta_v=----------
  456. a1*s1*s2
  457. -------- 3. Symmetry:
  458. xi_x=0
  459. xi_y=0
  460. xi_z=0
  461. xi_t=0
  462. eta_r=0
  463. 1
  464. eta_f=-------
  465. s1*s2
  466. eta_v=0
  467. -------- 4. Symmetry:
  468. xi_x=0
  469. xi_y=0
  470. xi_z=0
  471. xi_t=1
  472. eta_r=0
  473. eta_f=0
  474. eta_v=0
  475. -------- 5. Symmetry:
  476. xi_x=0
  477. xi_y=0
  478. 1
  479. xi_z=----
  480. s1
  481. xi_t=0
  482. eta_r=0
  483. - w1
  484. eta_f=-------
  485. s1*s2
  486. eta_v=0
  487. -------- 6. Symmetry:
  488. xi_x=0
  489. 1
  490. xi_y=-------
  491. s1*s2
  492. xi_z=0
  493. xi_t=0
  494. eta_r=0
  495. eta_f=0
  496. eta_v=0
  497. -------- 7. Symmetry:
  498. y
  499. xi_x=-------
  500. s1*s2
  501. - x
  502. xi_y=-------
  503. s1*s2
  504. xi_z=0
  505. xi_t=0
  506. eta_r=0
  507. eta_f=0
  508. eta_v=0
  509. -------- 8. Symmetry:
  510. 1
  511. xi_x=-------
  512. s1*s2
  513. xi_y=0
  514. xi_z=0
  515. xi_t=0
  516. eta_r=0
  517. eta_f=0
  518. eta_v=0
  519. --------
  520. Time: 23830 ms plus GC time: 1840 ms
  521. -------------------------------------------------------
  522. In the following example a system of two equations (by
  523. V.Sokolov) is investigated concerning a special ansatz for
  524. 4th order symmetries. The ansatz for the symmetries includes
  525. two unknown functions f,g. Because x is the second variable
  526. in the list of variables {t,x}, the name u!`2 stands for
  527. df(u,x).
  528. Because higher order symmetries are investigated we have
  529. to set prelim_:=nil. The symmetries to be calculated are
  530. lengthy and therefore conditions are not very overdetermined.
  531. In that case CRACK can take long to solve a single
  532. subset of conditions. The complete set of conditions would
  533. have been more overdetermined and easier to solve. Therefore
  534. the advantage of first formulating all conditions and then
  535. solving them together with one CRACK call is that having
  536. more equations, the chance of finding short integrable
  537. equations among then is higher, i.e. CRACK has more freedom
  538. in optimizing the computation. Therefore individual_:=nil
  539. is more appropriate in this example.
  540. Because 4th order conditions are to be computed the
  541. `binding stack size' is increased.
  542. (Time ~ 5 min.)
  543. -------------------------------------------------------
  544. The PDE-system under investigation is :
  545. df(u,t)=df(u,x,2) + df(u,x)*u + df(u,x)*v + df(v,x)*u
  546. df(v,t)=df(u,x)*v - df(v,x,2) + df(v,x)*u + df(v,x)*v
  547. for the function(s) :
  548. u(t,x), v(t,x)
  549. The symmetries are:
  550. -------- 1. Symmetry:
  551. xi_t=0
  552. xi_x=0
  553. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
  554. 2
  555. + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
  556. 2 2 2
  557. + 3*df(u,x,2)*v + 2*df(u,x,2) + 6*df(u,x) *u + 9*df(u,x) *v
  558. + 4*df(u,x)*df(v,x,2) + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v
  559. 3 2 2
  560. + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v + 2*df(u,x)*u
  561. 3 3
  562. + df(u,x)*v + 2*df(u,x)*v + 2*df(v,x,3)*u + 3*df(v,x)*u
  563. 2 2
  564. + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 2*df(v,x)*u)/2
  565. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  566. 2
  567. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 3*df(u,x)*u *v
  568. 2 3
  569. + 9*df(u,x)*u*v + 3*df(u,x)*v + 2*df(u,x)*v - 2*df(v,x,4)
  570. 2
  571. + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u
  572. 2 2
  573. - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 2*df(v,x,2) - 9*df(v,x) *u
  574. 2 3 2 2
  575. - 6*df(v,x) *v + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v
  576. 3
  577. + 2*df(v,x)*u + df(v,x)*v + 2*df(v,x)*v)/2
  578. -------- 2. Symmetry:
  579. xi_t=0
  580. xi_x=0
  581. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
  582. 2
  583. + 6*df(u,x,2)*df(v,x) + 4*df(u,x,2)*t + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
  584. 2 2 2
  585. + 3*df(u,x,2)*v + 6*df(u,x) *u + 9*df(u,x) *v + 4*df(u,x)*df(v,x,2)
  586. + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + 4*df(u,x)*t*u
  587. 3 2 2
  588. + 4*df(u,x)*t*v + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v
  589. 3
  590. + df(u,x)*v + 2*df(u,x)*x + 2*df(v,x,3)*u + 4*df(v,x)*t*u
  591. 3 2 2
  592. + 3*df(v,x)*u + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 2*u)/2
  593. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  594. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 4*df(u,x)*t*v
  595. 2 2 3
  596. + 3*df(u,x)*u *v + 9*df(u,x)*u*v + 3*df(u,x)*v - 2*df(v,x,4)
  597. + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 4*df(v,x,2)*t
  598. 2 2 2
  599. - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 9*df(v,x) *u
  600. 2 3
  601. - 6*df(v,x) *v + 4*df(v,x)*t*u + 4*df(v,x)*t*v + df(v,x)*u
  602. 2 2 3
  603. + 9*df(v,x)*u *v + 9*df(v,x)*u*v + df(v,x)*v + 2*df(v,x)*x + 2*v)/2
  604. -------- 3. Symmetry:
  605. xi_t=0
  606. xi_x=0
  607. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 8*df(u,x,3)
  608. 2
  609. + 10*df(u,x,2)*df(u,x) + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u
  610. 2
  611. + 9*df(u,x,2)*u*v + 12*df(u,x,2)*u + 3*df(u,x,2)*v + 12*df(u,x,2)*v
  612. 2 2 2
  613. + 6*df(u,x) *u + 9*df(u,x) *v + 12*df(u,x) + 4*df(u,x)*df(v,x,2)
  614. + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + 12*df(u,x)*df(v,x)
  615. 3 2 2 2
  616. + df(u,x)*u + 9*df(u,x)*u *v + 6*df(u,x)*u + 9*df(u,x)*u*v
  617. 3 2
  618. + 24*df(u,x)*u*v + df(u,x)*v + 6*df(u,x)*v + 2*df(v,x,3)*u
  619. 3 2 2 2
  620. + 3*df(v,x)*u + 9*df(v,x)*u *v + 12*df(v,x)*u + 3*df(v,x)*u*v
  621. + 12*df(v,x)*u*v)/2
  622. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  623. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v - 12*df(u,x)*df(v,x)
  624. 2 2 3
  625. + 3*df(u,x)*u *v + 9*df(u,x)*u*v + 12*df(u,x)*u*v + 3*df(u,x)*v
  626. 2
  627. + 12*df(u,x)*v - 2*df(v,x,4) + 4*df(v,x,3)*u + 4*df(v,x,3)*v
  628. 2
  629. + 8*df(v,x,3) + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v
  630. 2 2
  631. - 12*df(v,x,2)*u - 3*df(v,x,2)*v - 12*df(v,x,2)*v - 9*df(v,x) *u
  632. 2 2 3 2
  633. - 6*df(v,x) *v - 12*df(v,x) + df(v,x)*u + 9*df(v,x)*u *v
  634. 2 2 3
  635. + 6*df(v,x)*u + 9*df(v,x)*u*v + 24*df(v,x)*u*v + df(v,x)*v
  636. 2
  637. + 6*df(v,x)*v )/2
  638. -------- 4. Symmetry:
  639. xi_t=0
  640. xi_x=0
  641. eta_u=(2*df(u,x,4) + 8*df(u,x,3)*t + 4*df(u,x,3)*u + 4*df(u,x,3)*v
  642. + 10*df(u,x,2)*df(u,x) + 6*df(u,x,2)*df(v,x) + 12*df(u,x,2)*t*u
  643. 2 2
  644. + 12*df(u,x,2)*t*v + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v + 3*df(u,x,2)*v
  645. 2 2 2
  646. + 4*df(u,x,2)*x + 12*df(u,x) *t + 6*df(u,x) *u + 9*df(u,x) *v
  647. + 4*df(u,x)*df(v,x,2) + 12*df(u,x)*df(v,x)*t + 9*df(u,x)*df(v,x)*u
  648. 2
  649. + 6*df(u,x)*df(v,x)*v + 6*df(u,x)*t*u + 24*df(u,x)*t*u*v
  650. 2 3 2 2
  651. + 6*df(u,x)*t*v + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v
  652. 3
  653. + 4*df(u,x)*u*x + df(u,x)*v + 4*df(u,x)*v*x + 16*df(u,x)
  654. 2 3
  655. + 2*df(v,x,3)*u + 12*df(v,x)*t*u + 12*df(v,x)*t*u*v + 3*df(v,x)*u
  656. 2 2 2
  657. + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 4*df(v,x)*u*x + 2*u + 6*u*v)/2
  658. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  659. - 12*df(u,x)*df(v,x)*t - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v
  660. 2 2 2
  661. + 12*df(u,x)*t*u*v + 12*df(u,x)*t*v + 3*df(u,x)*u *v + 9*df(u,x)*u*v
  662. 3
  663. + 3*df(u,x)*v + 4*df(u,x)*v*x - 2*df(v,x,4) + 8*df(v,x,3)*t
  664. + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x)
  665. 2
  666. - 12*df(v,x,2)*t*u - 12*df(v,x,2)*t*v - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v
  667. 2 2 2
  668. - 3*df(v,x,2)*v - 4*df(v,x,2)*x - 12*df(v,x) *t - 9*df(v,x) *u
  669. 2 2 2
  670. - 6*df(v,x) *v + 6*df(v,x)*t*u + 24*df(v,x)*t*u*v + 6*df(v,x)*t*v
  671. 3 2 2
  672. + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v + 4*df(v,x)*u*x
  673. 3 2
  674. + df(v,x)*v + 4*df(v,x)*v*x + 6*u*v + 2*v )/2
  675. -------- 5. Symmetry:
  676. xi_t=0
  677. xi_x=0
  678. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
  679. 2
  680. + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
  681. 2 2 2
  682. + 3*df(u,x,2)*v + 6*df(u,x) *u + 9*df(u,x) *v + 4*df(u,x)*df(v,x,2)
  683. 3
  684. + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + df(u,x)*u
  685. 2 2 3
  686. + 9*df(u,x)*u *v + 9*df(u,x)*u*v + df(u,x)*v + 2*df(u,x)
  687. 3 2 2
  688. + 2*df(v,x,3)*u + 3*df(v,x)*u + 9*df(v,x)*u *v + 3*df(v,x)*u*v )/2
  689. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  690. 2
  691. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 3*df(u,x)*u *v
  692. 2 3
  693. + 9*df(u,x)*u*v + 3*df(u,x)*v - 2*df(v,x,4) + 4*df(v,x,3)*u
  694. 2
  695. + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u
  696. 2 2 2
  697. - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 9*df(v,x) *u - 6*df(v,x) *v
  698. 3 2 2 3
  699. + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v + df(v,x)*v + 2*df(v,x))
  700. /2
  701. --------
  702. 4: 4: 4: 4: 4: 4: 4: 4: 4:
  703. Time for test: 141150 ms, plus GC time: 10660 ms
  704. 5: 5:
  705. Quitting
  706. Sun Jan 3 23:54:19 MET 1999