assist.rlg 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591
  1. Sun Aug 18 16:14:14 2002 run on Windows
  2. % Test of Assist Package version 2.31.
  3. % DATE : 30 August 1996
  4. % Author: H. Caprasse <hubert.caprasse@ulg.ac.be>
  5. %load_package assist$
  6. Comment 2. HELP for ASSIST:;
  7. ;
  8. assist();
  9. Argument of ASSISTHELP must be an integer between 3 and 14.
  10. Each integer corresponds to a section number in the documentation:
  11. 3: switches 4: lists 5: bags 6: sets
  12. 7: utilities 8: properties and flags 9: control functions
  13. 10: handling of polynomials
  14. 11: handling of transcendental functions
  15. 12: handling of n-dimensional vectors
  16. 13: grassmann variables 14: matrices
  17. ;
  18. assisthelp(7);
  19. {{mkidnew,list_to_ids,oddp,followline,detidnum,dellastdigit,==},
  20. {randomlist,mkrandtabl},
  21. {permutations,perm_to_num,num_to_perm,combnum,combinations,cyclicpermlist,
  22. symmetrize,remsym},
  23. {extremum,sortnumlist,sortlist,algsort},
  24. {funcvar,implicit,depatom,explicit,simplify,korderlist,remcom},
  25. {checkproplist,extractlist,array_to_list,list_to_array},
  26. {remvector,remindex,mkgam}}
  27. ;
  28. Comment 3. CONTROL OF SWITCHES:;
  29. ;
  30. switches;
  31. **** exp:=t .................... allfac:= t ****
  32. **** ezgcd:=nil ................. gcd:= nil ****
  33. **** mcd:=t ....................... lcm:= t ****
  34. **** div:=nil ................... rat:= nil ****
  35. **** intstr:=nil ........... rational:= nil ****
  36. **** precise:=t ............. reduced:= nil ****
  37. **** complex:=nil ....... rationalize:= nil ****
  38. **** factor:= nil ....... combineexpt:= nil ****
  39. **** revpri:= nil ........ distribute:= nil ****
  40. off exp;
  41. on gcd;
  42. off precise;
  43. switches;
  44. **** exp:=nil .................... allfac:= t ****
  45. **** ezgcd:=nil ................. gcd:= t ****
  46. **** mcd:=t ....................... lcm:= t ****
  47. **** div:=nil ................... rat:= nil ****
  48. **** intstr:=nil ........... rational:= nil ****
  49. **** precise:=nil ............. reduced:= nil ****
  50. **** complex:=nil ....... rationalize:= nil ****
  51. **** factor:= nil ....... combineexpt:= nil ****
  52. **** revpri:= nil ........ distribute:= nil ****
  53. switchorg;
  54. switches;
  55. **** exp:=t .................... allfac:= t ****
  56. **** ezgcd:=nil ................. gcd:= nil ****
  57. **** mcd:=t ....................... lcm:= t ****
  58. **** div:=nil ................... rat:= nil ****
  59. **** intstr:=nil ........... rational:= nil ****
  60. **** precise:=t ............. reduced:= nil ****
  61. **** complex:=nil ....... rationalize:= nil ****
  62. **** factor:= nil ....... combineexpt:= nil ****
  63. **** revpri:= nil ........ distribute:= nil ****
  64. ;
  65. if !*mcd then "the switch mcd is on";
  66. the switch mcd is on
  67. if !*gcd then "the switch gcd is on";
  68. ;
  69. Comment 4. MANIPULATION OF THE LIST STRUCTURE:;
  70. ;
  71. t1:=mklist(5);
  72. t1 := {0,0,0,0,0}
  73. Comment MKLIST does NEVER destroy anything ;
  74. mklist(t1,10);
  75. {0,0,0,0,0,0,0,0,0,0}
  76. mklist(t1,3);
  77. {0,0,0,0,0}
  78. ;
  79. sequences 3;
  80. {{0,0,0},
  81. {1,0,0},
  82. {0,1,0},
  83. {1,1,0},
  84. {0,0,1},
  85. {1,0,1},
  86. {0,1,1},
  87. {1,1,1}}
  88. lisp;
  89. nil
  90. sequences 3;
  91. ((0 0 0) (1 0 0) (0 1 0) (1 1 0) (0 0 1) (1 0 1) (0 1 1) (1 1 1))
  92. algebraic;
  93. ;
  94. for i:=1:5 do t1:= (t1.i:=mkid(a,i));
  95. t1;
  96. {a1,
  97. a2,
  98. a3,
  99. a4,
  100. a5}
  101. ;
  102. t1.5;
  103. a5
  104. ;
  105. t1:=(t1.3).t1;
  106. t1 := {a3,a1,a2,a3,a4,a5}
  107. ;
  108. % Notice the blank spaces ! in the following illustration:
  109. 1 . t1;
  110. {1,a3,a1,a2,a3,a4,a5}
  111. ;
  112. % Splitting of a list:
  113. split(t1,{1,2,3});
  114. {{a3},
  115. {a1,a2},
  116. {a3,a4,a5}}
  117. ;
  118. % It truncates the list :
  119. split(t1,{3});
  120. {{a3,a1,a2}}
  121. ;
  122. % A KERNEL may be coerced to a list:
  123. kernlist sin x;
  124. {x}
  125. ;
  126. % algnlist constructs a list which contains n-times a given list
  127. algnlist(t1,2);
  128. {{a3,
  129. a1,
  130. a2,
  131. a3,
  132. a4,
  133. a5},
  134. {a3,
  135. a1,
  136. a2,
  137. a3,
  138. a4,
  139. a5}}
  140. ;
  141. % Delete :
  142. delete(x, {a,b,x,f,x});
  143. {a,b,f,x}
  144. ;
  145. % delete_all eliminates ALL occurences of x:
  146. delete_all(x,{a,b,x,f,x});
  147. {a,b,f}
  148. ;
  149. remove(t1,4);
  150. {a3,a1,a2,a4,a5}
  151. ;
  152. % delpair deletes a pair if it is possible.
  153. delpair(a1,pair(t1,t1));
  154. {{a3,a3},
  155. {a2,a2},
  156. {a3,a3},
  157. {a4,a4},
  158. {a5,a5}}
  159. ;
  160. elmult(a1,t1);
  161. 1
  162. ;
  163. frequency append(t1,t1);
  164. {{a3,4},
  165. {a1,2},
  166. {a2,2},
  167. {a4,2},
  168. {a5,2}}
  169. ;
  170. insert(a1,t1,3);
  171. {a3,a1,a1,a2,a3,a4,a5}
  172. ;
  173. li:=list(1,2,5);
  174. li := {1,2,5}
  175. ;
  176. % Not to destroy an already ordered list during insertion:
  177. insert_keep_order(4,li,lessp);
  178. {1,2,4,5}
  179. insert_keep_order(bb,t1,ordp);
  180. {a3,
  181. a1,
  182. a2,
  183. a3,
  184. a4,
  185. a5,
  186. bb}
  187. ;
  188. % the same function when appending two correctly ORDERED lists:
  189. merge_list(li,li,<);
  190. {1,1,2,2,5,5}
  191. ;
  192. merge_list({5,2,1},{5,2,1},geq);
  193. {5,5,2,2,1,1}
  194. ;
  195. depth list t1;
  196. 2
  197. ;
  198. depth a1;
  199. 0
  200. % Any list can be flattened into a list of depth 1:
  201. mkdepth_one {1,{{a,b,c}},{c,{{d,e}}}};
  202. {1,
  203. a,
  204. b,
  205. c,
  206. c,
  207. d,
  208. e}
  209. position(a2,t1);
  210. 3
  211. appendn(li,li,li);
  212. {1,2,5,1,2,5,1,2,5}
  213. ;
  214. clear t1,li;
  215. comment 5. THE BAG STRUCTURE AND OTHER FUNCTION FOR LISTS AND BAGS.
  216. ;
  217. aa:=bag(x,1,"A");
  218. aa := bag(x,1,A)
  219. putbag bg1,bg2;
  220. t
  221. on errcont;
  222. putbag list;
  223. ***** list invalid as BAG
  224. off errcont;
  225. aa:=bg1(x,y**2);
  226. 2
  227. aa := bg1(x,y )
  228. ;
  229. if bagp aa then "this is a bag";
  230. this is a bag
  231. ;
  232. % A bag is a composite object:
  233. clearbag bg2;
  234. ;
  235. depth bg2(x);
  236. 0
  237. ;
  238. depth bg1(x);
  239. 1
  240. ;
  241. if baglistp aa then "this is a bag or list";
  242. this is a bag or list
  243. if baglistp {x} then "this is a bag or list";
  244. this is a bag or list
  245. if bagp {x} then "this is a bag";
  246. if bagp aa then "this is a bag";
  247. this is a bag
  248. ;
  249. ab:=bag(x1,x2,x3);
  250. ab := bag(x1,x2,x3)
  251. al:=list(y1,y2,y3);
  252. al := {y1,y2,y3}
  253. % The basic lisp functions are also active for bags:
  254. first ab;
  255. bag(x1)
  256. third ab;
  257. bag(x3)
  258. first al;
  259. y1
  260. last ab;
  261. bag(x3)
  262. last al;
  263. y3
  264. belast ab;
  265. bag(x1,x2)
  266. belast al;
  267. {y1,y2}
  268. belast {a,b,a,b,a};
  269. {a,b,a,b}
  270. rest ab;
  271. bag(x2,x3)
  272. rest al;
  273. {y2,y3}
  274. ;
  275. % The "dot" plays the role of the function "part":
  276. ab.1;
  277. x1
  278. al.3;
  279. y3
  280. on errcont;
  281. ab.4;
  282. ***** Expression bag(x1,x2,x3) does not have part 4
  283. off errcont;
  284. a.ab;
  285. bag(a,x1,x2,x3)
  286. % ... but notice
  287. 1 . ab;
  288. bag(1,x1,x2,x3)
  289. % Coercion from bag to list and list to bag:
  290. kernlist(aa);
  291. 2
  292. {x,y }
  293. ;
  294. listbag(list x,bg1);
  295. bg1(x)
  296. ;
  297. length ab;
  298. 3
  299. ;
  300. remove(ab,3);
  301. bag(x1,x2)
  302. ;
  303. delete(y2,al);
  304. {y1,y3}
  305. ;
  306. reverse al;
  307. {y3,y2,y1}
  308. ;
  309. member(x3,ab);
  310. bag(x3)
  311. ;
  312. al:=list(x**2,x**2,y1,y2,y3);
  313. 2
  314. al := {x ,
  315. 2
  316. x ,
  317. y1,
  318. y2,
  319. y3}
  320. ;
  321. elmult(x**2,al);
  322. 2
  323. ;
  324. position(y3,al);
  325. 5
  326. ;
  327. repfirst(xx,al);
  328. 2
  329. {xx,x ,y1,y2,y3}
  330. ;
  331. represt(xx,ab);
  332. bag(x1,xx)
  333. ;
  334. insert(x,al,3);
  335. 2 2
  336. {x ,x ,x,y1,y2,y3}
  337. insert( b,ab,2);
  338. bag(x1,b,xx)
  339. insert(ab,ab,1);
  340. bag(bag(x1,xx),x1,xx)
  341. ;
  342. substitute (new,y1,al);
  343. 2 2
  344. {x ,x ,new,y2,y3}
  345. ;
  346. appendn(ab,ab,ab);
  347. {x1,xx,x1,xx,x1,xx}
  348. ;
  349. append(ab,al);
  350. 2 2
  351. bag(x1,xx,x ,x ,y1,y2,y3)
  352. append(al,ab);
  353. 2 2
  354. {x ,x ,y1,y2,y3,x1,xx}
  355. clear ab;
  356. a1;
  357. a1
  358. ;
  359. comment Association list or bag may be constructed and thoroughly used;
  360. ;
  361. l:=list(a1,a2,a3,a4);
  362. l := {a1,a2,a3,a4}
  363. b:=bg1(x1,x2,x3);
  364. b := bg1(x1,x2,x3)
  365. al:=pair(list(1,2,3,4),l);
  366. al := {{1,a1},{2,a2},{3,a3},{4,a4}}
  367. ab:=pair(bg1(1,2,3),b);
  368. ab := bg1(bg1(1,x1),bg1(2,x2),bg1(3,x3))
  369. ;
  370. clear b;
  371. comment : A BOOLEAN function abaglistp to test if it is an association;
  372. ;
  373. if abaglistp bag(bag(1,2)) then "it is an associated bag";
  374. it is an associated bag
  375. ;
  376. % Values associated to the keys can be extracted
  377. % first occurence ONLY.
  378. ;
  379. asfirst(1,al);
  380. {1,a1}
  381. asfirst(3,ab);
  382. bg1(3,x3)
  383. ;
  384. assecond(a1,al);
  385. {1,a1}
  386. assecond(x3,ab);
  387. bg1(3,x3)
  388. ;
  389. aslast(z,list(list(x1,x2,x3),list(y1,y2,z)));
  390. {y1,y2,z}
  391. asrest(list(x2,x3),list(list(x1,x2,x3),list(y1,y2,z)));
  392. {x1,x2,x3}
  393. ;
  394. clear a1;
  395. ;
  396. % All occurences.
  397. asflist(x,bg1(bg1(x,a1,a2),bg1(x,b1,b2)));
  398. bg1(bg1(x,a1,a2),bg1(x,b1,b2))
  399. asslist(a1,list(list(x,a1),list(y,a1),list(x,y)));
  400. {{x,a1},{y,a1}}
  401. restaslist(bag(a1,x),bg1(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));
  402. bg1(bg1(x,b2),bg1(a1,a2))
  403. restaslist(list(a1,x),bag(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));
  404. bag(bag(x,b2),bag(a1,a2))
  405. ;
  406. Comment 6. SETS AND THEIR MANIPULATION FUNCTIONS
  407. ;
  408. ts:=mkset list(a1,a1,a,2,2);
  409. ts := {a1,a,2}
  410. if setp ts then "this is a SET";
  411. this is a SET
  412. ;
  413. union(ts,ts);
  414. {a1,a,2}
  415. ;
  416. diffset(ts,list(a1,a));
  417. {2}
  418. diffset(list(a1,a),ts);
  419. {}
  420. ;
  421. symdiff(ts,ts);
  422. {}
  423. ;
  424. intersect(listbag(ts,set1),listbag(ts,set2));
  425. set1(a1,a,2)
  426. Comment 7. GENERAL PURPOSE UTILITY FUNCTIONS :;
  427. ;
  428. clear a1,a2,a3,a,x,y,z,x1,x2,op$
  429. ;
  430. % DETECTION OF A GIVEN VARIABLE IN A GIVEN SET
  431. ;
  432. mkidnew();
  433. g0
  434. mkidnew(a);
  435. ag1
  436. ;
  437. dellastdigit 23;
  438. 2
  439. ;
  440. detidnum aa;
  441. detidnum a10;
  442. 10
  443. detidnum a1b2z34;
  444. 34
  445. ;
  446. list_to_ids list(a,1,rr,22);
  447. a1rr22
  448. ;
  449. if oddp 3 then "this is an odd integer";
  450. this is an odd integer
  451. ;
  452. <<prin2 1; followline 7; prin2 8;>>;
  453. 1
  454. 8
  455. ;
  456. operator foo;
  457. foo(x):=x;
  458. foo(x) := x
  459. foo(x)==value;
  460. value
  461. x;
  462. value
  463. % it is equal to value
  464. clear x;
  465. ;
  466. randomlist(10,20);
  467. {8,1,8,0,5,7,3,8,0,5,5,9,0,5,2,0,7,5,5,1}
  468. % Generation of tables of random numbers:
  469. % One dimensional:
  470. mkrandtabl({4},10,ar);
  471. {4}
  472. array_to_list ar;
  473. {5,4,4,7}
  474. ;
  475. % Two dimensional:
  476. mkrandtabl({3,4},10,ar);
  477. *** array ar redefined
  478. {3,4}
  479. array_to_list ar;
  480. {{9,5,2,8},{7,3,5,2},{8,1,6,0}}
  481. ;
  482. % With a base which is a decimal number:
  483. on rounded;
  484. mkrandtabl({5},3.5,ar);
  485. *** array ar redefined
  486. {5}
  487. array_to_list ar;
  488. {2.77546499305,1.79693268486,3.43100115041,2.11636272025,3.45447023392}
  489. off rounded;
  490. ;
  491. % Combinatorial functions :
  492. permutations(bag(a1,a2,a3));
  493. bag(bag(a1,a2,a3),bag(a1,a3,a2),bag(a2,a1,a3),bag(a2,a3,a1),bag(a3,a1,a2),
  494. bag(a3,a2,a1))
  495. permutations {1,2,3};
  496. {{1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}}
  497. ;
  498. cyclicpermlist{1,2,3};
  499. {{1,2,3},{2,3,1},{3,1,2}}
  500. ;
  501. combnum(8,3);
  502. 56
  503. ;
  504. combinations({1,2,3},2);
  505. {{2,3},{1,3},{1,2}}
  506. ;
  507. perm_to_num({3,2,1,4},{1,2,3,4});
  508. 5
  509. num_to_perm(5,{1,2,3,4});
  510. {3,2,1,4}
  511. ;
  512. operator op;
  513. symmetric op;
  514. op(x,y)-op(y,x);
  515. 0
  516. remsym op;
  517. op(x,y)-op(y,x);
  518. op(x,y) - op(y,x)
  519. ;
  520. labc:={a,b,c};
  521. labc := {a,b,c}
  522. symmetrize(labc,foo,cyclicpermlist);
  523. foo(a,b,c) + foo(b,c,a) + foo(c,a,b)
  524. symmetrize(labc,list,permutations);
  525. {a,b,c} + {a,c,b} + {b,a,c} + {b,c,a} + {c,a,b} + {c,b,a}
  526. symmetrize({labc},foo,cyclicpermlist);
  527. foo({a,b,c}) + foo({b,c,a}) + foo({c,a,b})
  528. ;
  529. extremum({1,2,3},lessp);
  530. 1
  531. extremum({1,2,3},geq);
  532. 3
  533. extremum({a,b,c},nordp);
  534. c
  535. ;
  536. funcvar(x+y);
  537. {x,y}
  538. funcvar(sin log(x+y));
  539. {x,y}
  540. funcvar(sin pi);
  541. funcvar(x+e+i);
  542. {x}
  543. funcvar sin(x+i*y);
  544. {y,x}
  545. ;
  546. operator op;
  547. *** op already defined as operator
  548. noncom op;
  549. op(0)*op(x)-op(x)*op(0);
  550. - op(x)*op(0) + op(0)*op(x)
  551. remnoncom op;
  552. t
  553. op(0)*op(x)-op(x)*op(0);
  554. 0
  555. clear op;
  556. ;
  557. depatom a;
  558. a
  559. depend a,x,y;
  560. depatom a;
  561. {x,y}
  562. ;
  563. depend op,x,y,z;
  564. ;
  565. implicit op;
  566. op
  567. explicit op;
  568. op(x,y,z)
  569. depend y,zz;
  570. explicit op;
  571. op(x,y(zz),z)
  572. aa:=implicit op;
  573. aa := op
  574. clear op;
  575. ;
  576. korder x,z,y;
  577. korderlist;
  578. (x z y)
  579. ;
  580. if checkproplist({1,2,3},fixp) then "it is a list of integers";
  581. it is a list of integers
  582. ;
  583. if checkproplist({a,b1,c},idp) then "it is a list of identifiers";
  584. it is a list of identifiers
  585. ;
  586. if checkproplist({1,b1,c},idp) then "it is a list of identifiers";
  587. ;
  588. lmix:={1,1/2,a,"st"};
  589. 1
  590. lmix := {1,---,a,st}
  591. 2
  592. ;
  593. extractlist(lmix,fixp);
  594. {1}
  595. extractlist(lmix,numberp);
  596. 1
  597. {1,---}
  598. 2
  599. extractlist(lmix,idp);
  600. {a}
  601. extractlist(lmix,stringp);
  602. {st}
  603. ;
  604. % From a list to an array:
  605. list_to_array({a,b,c,d},1,ar);
  606. *** array ar redefined
  607. array_to_list ar;
  608. {a,b,c,d}
  609. list_to_array({{a},{b},{c},{d}},2,ar);
  610. *** array ar redefined
  611. ;
  612. comment 8. PROPERTIES AND FLAGS:;
  613. ;
  614. putflag(list(a1,a2),fl1,t);
  615. t
  616. putflag(list(a1,a2),fl2,t);
  617. t
  618. displayflag a1;
  619. {fl1,fl2}
  620. ;
  621. clearflag a1,a2;
  622. displayflag a2;
  623. {}
  624. putprop(x1,propname,value,t);
  625. x1
  626. displayprop(x1,prop);
  627. {}
  628. displayprop(x1,propname);
  629. {propname,value}
  630. ;
  631. putprop(x1,propname,value,0);
  632. displayprop(x1,propname);
  633. {}
  634. ;
  635. Comment 9. CONTROL FUNCTIONS:;
  636. ;
  637. alatomp z;
  638. t
  639. z:=s1;
  640. z := s1
  641. alatomp z;
  642. t
  643. ;
  644. alkernp z;
  645. t
  646. alkernp log sin r;
  647. t
  648. ;
  649. precp(difference,plus);
  650. t
  651. precp(plus,difference);
  652. precp(times,.);
  653. precp(.,times);
  654. t
  655. ;
  656. if stringp x then "this is a string";
  657. if stringp "this is a string" then "this is a string";
  658. this is a string
  659. ;
  660. if nordp(b,a) then "a is ordered before b";
  661. a is ordered before b
  662. operator op;
  663. for all x,y such that nordp(x,y) let op(x,y)=x+y;
  664. op(a,a);
  665. op(a,a)
  666. op(b,a);
  667. a + b
  668. op(a,b);
  669. op(a,b)
  670. clear op;
  671. ;
  672. depvarp(log(sin(x+cos(1/acos rr))),rr);
  673. t
  674. ;
  675. clear y,x,u,v;
  676. clear op;
  677. ;
  678. % DISPLAY and CLEARING of user's objects of various types entered
  679. % to the console. Only TOP LEVEL assignments are considered up to now.
  680. % The following statements must be made INTERACTIVELY. We put them
  681. % as COMMENTS for the user to experiment with them. We do this because
  682. % in a fresh environment all outputs are nil.
  683. ;
  684. % THIS PART OF THE TEST SHOULD BE REALIZED INTERACTIVELY.
  685. % SEE THE ** ASSIST LOG ** FILE .
  686. %v1:=v2:=1;
  687. %show scalars;
  688. %aa:=list(a);
  689. %show lists;
  690. %array ar(2);
  691. %show arrays;
  692. %load matr$
  693. %matrix mm;
  694. %show matrices;
  695. %x**2;
  696. %saveas res;
  697. %show saveids;
  698. %suppress scalars;
  699. %show scalars;
  700. %show lists;
  701. %suppress all;
  702. %show arrays;
  703. %show matrices;
  704. ;
  705. comment end of the interactive part;
  706. ;
  707. clear op;
  708. operator op;
  709. op(x,y,z);
  710. op(x,y,s1)
  711. clearop op;
  712. t
  713. ;
  714. clearfunctions abs,tan;
  715. *** abs is unprotected : Cleared ***
  716. *** tan is a protected function: NOT cleared ***
  717. "Clearing is complete"
  718. ;
  719. comment THIS FUNCTION MUST BE USED WITH CARE !!!!!;
  720. ;
  721. Comment 10. HANDLING OF POLYNOMIALS
  722. clear x,y,z;
  723. COMMENT To see the internal representation :;
  724. ;
  725. off pri;
  726. ;
  727. pol:=(x-2*y+3*z**2-1)**3;
  728. 3 2 2 2 2 4
  729. pol := x + x *( - 6*y + 9*s1 - 3) + x*(12*y + y*( - 36*s1 + 12) + 27*s1 -
  730. 2 3 2 2 4 2
  731. 18*s1 + 3) - 8*y + y *(36*s1 - 12) + y*( - 54*s1 + 36*s1 - 6) + 27*
  732. 6 4 2
  733. s1 - 27*s1 + 9*s1 - 1
  734. ;
  735. pold:=distribute pol;
  736. 6 4 2 3 2 2 2 2 2
  737. pold := 27*s1 - 27*s1 + 9*s1 + x - 6*x *y + 9*x *s1 - 3*x + 12*x*y + 27*x
  738. 4 2 2 3 2 2 2
  739. *s1 - 18*x*s1 - 36*x*y*s1 + 12*x*y + 3*x - 8*y + 36*y *s1 - 12*y -
  740. 4 2
  741. 54*y*s1 + 36*y*s1 - 6*y - 1
  742. ;
  743. on distribute;
  744. leadterm (pold);
  745. 6
  746. 27*s1
  747. pold:=redexpr pold;
  748. 4 2 3 2 2 2 2 2 4
  749. pold := - 27*s1 + 9*s1 + x - 6*x *y + 9*x *s1 - 3*x + 12*x*y + 27*x*s1 -
  750. 2 2 3 2 2 2
  751. 18*x*s1 - 36*x*y*s1 + 12*x*y + 3*x - 8*y + 36*y *s1 - 12*y - 54*y*
  752. 4 2
  753. s1 + 36*y*s1 - 6*y - 1
  754. leadterm pold;
  755. 4
  756. - 27*s1
  757. ;
  758. off distribute;
  759. polp:=pol$
  760. leadterm polp;
  761. 3
  762. x
  763. polp:=redexpr polp;
  764. 2 2 2 2 4
  765. polp := x *( - 6*y + 9*s1 - 3) + x*(12*y + y*( - 36*s1 + 12) + 27*s1 - 18*s1
  766. 2 3 2 2 4 2 6
  767. + 3) - 8*y + y *(36*s1 - 12) + y*( - 54*s1 + 36*s1 - 6) + 27*s1 -
  768. 4 2
  769. 27*s1 + 9*s1 - 1
  770. leadterm polp;
  771. 2 2
  772. x *( - 6*y + 9*s1 - 3)
  773. ;
  774. monom polp;
  775. 6
  776. {27*s1 ,
  777. 4
  778. - 27*s1 ,
  779. 2
  780. 9*s1 ,
  781. 2
  782. - 6*x *y,
  783. 2 2
  784. 9*x *s1 ,
  785. 2
  786. - 3*x ,
  787. 2
  788. 12*x*y ,
  789. 4
  790. 27*x*s1 ,
  791. 2
  792. - 18*x*s1 ,
  793. 2
  794. - 36*x*y*s1 ,
  795. 12*x*y,
  796. 3*x,
  797. 3
  798. - 8*y ,
  799. 2 2
  800. 36*y *s1 ,
  801. 2
  802. - 12*y ,
  803. 4
  804. - 54*y*s1 ,
  805. 2
  806. 36*y*s1 ,
  807. - 6*y,
  808. -1}
  809. ;
  810. on pri;
  811. ;
  812. splitterms polp;
  813. 2 2
  814. {{9*s1 *x ,
  815. 2
  816. 12*x*y ,
  817. 12*x*y,
  818. 4
  819. 27*s1 *x,
  820. 3*x,
  821. 2 2
  822. 36*s1 *y ,
  823. 2
  824. 36*s1 *y,
  825. 6
  826. 27*s1 ,
  827. 2
  828. 9*s1 },
  829. 2
  830. {6*x *y,
  831. 2
  832. 3*x ,
  833. 2
  834. 36*s1 *x*y,
  835. 2
  836. 18*s1 *x,
  837. 3
  838. 8*y ,
  839. 2
  840. 12*y ,
  841. 4
  842. 54*s1 *y,
  843. 6*y,
  844. 4
  845. 27*s1 ,
  846. 1}}
  847. ;
  848. splitplusminus polp;
  849. 6 4 2 2 2 2 2 2 2
  850. {3*(9*s1 + 9*s1 *x + 3*s1 *x + 12*s1 *y + 12*s1 *y + 3*s1 + 4*x*y + 4*x*y
  851. + x),
  852. 4 4 2 2 2 2 3 2
  853. - 54*s1 *y - 27*s1 - 36*s1 *x*y - 18*s1 *x - 6*x *y - 3*x - 8*y - 12*y
  854. - 6*y - 1}
  855. ;
  856. divpol(pol,x+2*y+3*z**2);
  857. 4 2 2 2 2 2
  858. {9*s1 + 6*s1 *x - 24*s1 *y - 9*s1 + x - 8*x*y - 3*x + 28*y + 18*y + 3,
  859. 3 2
  860. - 64*y - 48*y - 12*y - 1}
  861. ;
  862. lowestdeg(pol,y);
  863. 0
  864. ;
  865. Comment 11. HANDLING OF SOME TRANSCENDENTAL FUNCTIONS:;
  866. ;
  867. trig:=((sin x)**2+(cos x)**2)**4;
  868. trig :=
  869. 8 6 2 4 4 2 6 8
  870. cos(x) + 4*cos(x) *sin(x) + 6*cos(x) *sin(x) + 4*cos(x) *sin(x) + sin(x)
  871. trigreduce trig;
  872. 1
  873. trig:=sin (5x);
  874. trig := sin(5*x)
  875. trigexpand trig;
  876. 4 2 2 4
  877. sin(x)*(5*cos(x) - 10*cos(x) *sin(x) + sin(x) )
  878. trigreduce ws;
  879. sin(5*x)
  880. trigexpand sin(x+y+z);
  881. cos(s1)*cos(x)*sin(y) + cos(s1)*cos(y)*sin(x) + cos(x)*cos(y)*sin(s1)
  882. - sin(s1)*sin(x)*sin(y)
  883. ;
  884. ;
  885. hypreduce (sinh x **2 -cosh x **2);
  886. -1
  887. ;
  888. ;
  889. clear a,b,c,d;
  890. ;
  891. Comment 13. HANDLING OF N-DIMENSIONAL VECTORS:;
  892. ;
  893. clear u1,u2,v1,v2,v3,v4,w3,w4;
  894. u1:=list(v1,v2,v3,v4);
  895. u1 := {v1,v2,v3,v4}
  896. u2:=bag(w1,w2,w3,w4);
  897. u2 := bag(w1,w2,w3,w4)
  898. %
  899. sumvect(u1,u2);
  900. {v1 + w1,
  901. v2 + w2,
  902. v3 + w3,
  903. v4 + w4}
  904. minvect(u2,u1);
  905. bag( - v1 + w1, - v2 + w2, - v3 + w3, - v4 + w4)
  906. scalvect(u1,u2);
  907. v1*w1 + v2*w2 + v3*w3 + v4*w4
  908. crossvect(rest u1,rest u2);
  909. {v3*w4 - v4*w3,
  910. - v2*w4 + v4*w2,
  911. v2*w3 - v3*w2}
  912. mpvect(rest u1,rest u2, minvect(rest u1,rest u2));
  913. 0
  914. scalvect(crossvect(rest u1,rest u2),minvect(rest u1,rest u2));
  915. 0
  916. ;
  917. Comment 14. HANDLING OF GRASSMANN OPERATORS:;
  918. ;
  919. putgrass eta,eta1;
  920. grasskernel:=
  921. {eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
  922. (~x)*(~x) => 0 when grassp x};
  923. grasskernel := {eta(~x)*eta(~y) => - eta(y)*eta(x) when nordp(x,y),
  924. ~x*~x => 0 when grassp(x)}
  925. ;
  926. eta(y)*eta(x);
  927. eta(y)*eta(x)
  928. eta(y)*eta(x) where grasskernel;
  929. - eta(x)*eta(y)
  930. let grasskernel;
  931. eta(x)^2;
  932. 0
  933. eta(y)*eta(x);
  934. - eta(x)*eta(y)
  935. operator zz;
  936. grassparity (eta(x)*zz(y));
  937. 1
  938. grassparity (eta(x)*eta(y));
  939. 0
  940. grassparity(eta(x)+zz(y));
  941. parity undefined
  942. clearrules grasskernel;
  943. grasskernel:=
  944. {eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
  945. eta1(~x)*eta(~y) => -eta x * eta1 y,
  946. eta1(~x)*eta1(~y) => -eta1 y * eta1 x when nordp(x,y),
  947. (~x)*(~x) => 0 when grassp x};
  948. grasskernel := {eta(~x)*eta(~y) => - eta(y)*eta(x) when nordp(x,y),
  949. eta1(~x)*eta(~y) => - eta(x)*eta1(y),
  950. eta1(~x)*eta1(~y) => - eta1(y)*eta1(x) when nordp(x,y),
  951. ~x*~x => 0 when grassp(x)}
  952. ;
  953. let grasskernel;
  954. eta1(x)*eta(x)*eta1(z)*eta1(w);
  955. - eta(x)*eta1(s1)*eta1(w)*eta1(x)
  956. clearrules grasskernel;
  957. remgrass eta,eta1;
  958. clearop zz;
  959. t
  960. ;
  961. Comment 15. HANDLING OF MATRICES:;
  962. ;
  963. clear m,mm,b,b1,bb,cc,a,b,c,d,a1,a2;
  964. load_package matrix;
  965. baglmat(bag(bag(a1,a2)),m);
  966. t
  967. m;
  968. [a1 a2]
  969. on errcont;
  970. ;
  971. baglmat(bag(bag(a1),bag(a2)),m);
  972. ***** (mat ((*sq ((((a1 . 1) . 1)) . 1) t) (*sq ((((a2 . 1) . 1)) . 1) t)))
  973. should be an identifier
  974. off errcont;
  975. % **** i.e. it cannot redefine the matrix! in order
  976. % to avoid accidental redefinition of an already given matrix;
  977. clear m;
  978. baglmat(bag(bag(a1),bag(a2)),m);
  979. t
  980. m;
  981. [a1]
  982. [ ]
  983. [a2]
  984. on errcont;
  985. baglmat(bag(bag(a1),bag(a2)),bag);
  986. ***** operator bag invalid as matrix
  987. off errcont;
  988. comment Right since a bag-like object cannot become a matrix.;
  989. ;
  990. coercemat(m,op);
  991. op(op(a1),op(a2))
  992. coercemat(m,list);
  993. {{a1},{a2}}
  994. ;
  995. on nero;
  996. unitmat b1(2);
  997. matrix b(2,2);
  998. b:=mat((r1,r2),(s1,s2));
  999. [r1 r2]
  1000. b := [ ]
  1001. [s1 s2]
  1002. b1;
  1003. [1 0]
  1004. [ ]
  1005. [0 1]
  1006. b;
  1007. [r1 r2]
  1008. [ ]
  1009. [s1 s2]
  1010. mkidm(b,1);
  1011. [1 0]
  1012. [ ]
  1013. [0 1]
  1014. ;
  1015. seteltmat(b,newelt,2,2);
  1016. [r1 r2 ]
  1017. [ ]
  1018. [s1 newelt]
  1019. geteltmat(b,2,1);
  1020. s1
  1021. %
  1022. b:=matsubr(b,bag(1,2),2);
  1023. [r1 r2]
  1024. b := [ ]
  1025. [1 2 ]
  1026. ;
  1027. submat(b,1,2);
  1028. [1]
  1029. ;
  1030. bb:=mat((1+i,-i),(-1+i,-i));
  1031. [i + 1 - i]
  1032. bb := [ ]
  1033. [i - 1 - i]
  1034. cc:=matsubc(bb,bag(1,2),2);
  1035. [i + 1 1]
  1036. cc := [ ]
  1037. [i - 1 2]
  1038. ;
  1039. cc:=tp matsubc(bb,bag(1,2),2);
  1040. [i + 1 i - 1]
  1041. cc := [ ]
  1042. [ 1 2 ]
  1043. matextr(bb, bag,1);
  1044. bag(i + 1, - i)
  1045. ;
  1046. matextc(bb,list,2);
  1047. { - i, - i}
  1048. ;
  1049. hconcmat(bb,cc);
  1050. [i + 1 - i i + 1 i - 1]
  1051. [ ]
  1052. [i - 1 - i 1 2 ]
  1053. vconcmat(bb,cc);
  1054. [i + 1 - i ]
  1055. [ ]
  1056. [i - 1 - i ]
  1057. [ ]
  1058. [i + 1 i - 1]
  1059. [ ]
  1060. [ 1 2 ]
  1061. ;
  1062. tpmat(bb,bb);
  1063. [ 2*i - i + 1 - i + 1 -1]
  1064. [ ]
  1065. [ -2 - i + 1 i + 1 -1]
  1066. [ ]
  1067. [ -2 i + 1 - i + 1 -1]
  1068. [ ]
  1069. [ - 2*i i + 1 i + 1 -1]
  1070. bb tpmat bb;
  1071. [ 2*i - i + 1 - i + 1 -1]
  1072. [ ]
  1073. [ -2 - i + 1 i + 1 -1]
  1074. [ ]
  1075. [ -2 i + 1 - i + 1 -1]
  1076. [ ]
  1077. [ - 2*i i + 1 i + 1 -1]
  1078. ;
  1079. clear hbb;
  1080. hermat(bb,hbb);
  1081. [ - i + 1 - (i + 1)]
  1082. [ ]
  1083. [ i i ]
  1084. % id hbb changed to a matrix id and assigned to the hermitian matrix
  1085. % of bb.
  1086. ;
  1087. load_package HEPHYS;
  1088. % Use of remvector.
  1089. ;
  1090. vector v1,v2;
  1091. v1.v2;
  1092. v1.v2
  1093. remvector v1,v2;
  1094. on errcont;
  1095. v1.v2;
  1096. ***** v1 v2 invalid as list or bag
  1097. off errcont;
  1098. % To see the compatibility with ASSIST:
  1099. v1.{v2};
  1100. {v1,v2}
  1101. ;
  1102. index u;
  1103. vector v;
  1104. (v.u)^2;
  1105. v.v
  1106. remindex u;
  1107. t
  1108. (v.u)^2;
  1109. 2
  1110. u.v
  1111. ;
  1112. % Gamma matrices properties may be translated to any identifier:
  1113. clear l,v;
  1114. vector v;
  1115. g(l,v,v);
  1116. v.v
  1117. mkgam(op,t);
  1118. t
  1119. op(l,v,v);
  1120. v.v
  1121. mkgam(g,0);
  1122. operator g;
  1123. g(l,v,v);
  1124. g(l,v,v)
  1125. ;
  1126. clear g,op;
  1127. ;
  1128. % showtime;
  1129. end;
  1130. Time for test: 1561 ms, plus GC time: 90 ms