12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591 |
- Sun Aug 18 16:14:14 2002 run on Windows
- % Test of Assist Package version 2.31.
- % DATE : 30 August 1996
- % Author: H. Caprasse <hubert.caprasse@ulg.ac.be>
- %load_package assist$
- Comment 2. HELP for ASSIST:;
- ;
- assist();
- Argument of ASSISTHELP must be an integer between 3 and 14.
- Each integer corresponds to a section number in the documentation:
- 3: switches 4: lists 5: bags 6: sets
- 7: utilities 8: properties and flags 9: control functions
- 10: handling of polynomials
- 11: handling of transcendental functions
- 12: handling of n-dimensional vectors
- 13: grassmann variables 14: matrices
- ;
- assisthelp(7);
- {{mkidnew,list_to_ids,oddp,followline,detidnum,dellastdigit,==},
- {randomlist,mkrandtabl},
- {permutations,perm_to_num,num_to_perm,combnum,combinations,cyclicpermlist,
- symmetrize,remsym},
- {extremum,sortnumlist,sortlist,algsort},
- {funcvar,implicit,depatom,explicit,simplify,korderlist,remcom},
- {checkproplist,extractlist,array_to_list,list_to_array},
- {remvector,remindex,mkgam}}
- ;
- Comment 3. CONTROL OF SWITCHES:;
- ;
- switches;
- **** exp:=t .................... allfac:= t ****
- **** ezgcd:=nil ................. gcd:= nil ****
- **** mcd:=t ....................... lcm:= t ****
- **** div:=nil ................... rat:= nil ****
- **** intstr:=nil ........... rational:= nil ****
- **** precise:=t ............. reduced:= nil ****
- **** complex:=nil ....... rationalize:= nil ****
- **** factor:= nil ....... combineexpt:= nil ****
- **** revpri:= nil ........ distribute:= nil ****
- off exp;
- on gcd;
- off precise;
- switches;
- **** exp:=nil .................... allfac:= t ****
- **** ezgcd:=nil ................. gcd:= t ****
- **** mcd:=t ....................... lcm:= t ****
- **** div:=nil ................... rat:= nil ****
- **** intstr:=nil ........... rational:= nil ****
- **** precise:=nil ............. reduced:= nil ****
- **** complex:=nil ....... rationalize:= nil ****
- **** factor:= nil ....... combineexpt:= nil ****
- **** revpri:= nil ........ distribute:= nil ****
- switchorg;
- switches;
- **** exp:=t .................... allfac:= t ****
- **** ezgcd:=nil ................. gcd:= nil ****
- **** mcd:=t ....................... lcm:= t ****
- **** div:=nil ................... rat:= nil ****
- **** intstr:=nil ........... rational:= nil ****
- **** precise:=t ............. reduced:= nil ****
- **** complex:=nil ....... rationalize:= nil ****
- **** factor:= nil ....... combineexpt:= nil ****
- **** revpri:= nil ........ distribute:= nil ****
- ;
- if !*mcd then "the switch mcd is on";
- the switch mcd is on
- if !*gcd then "the switch gcd is on";
- ;
- Comment 4. MANIPULATION OF THE LIST STRUCTURE:;
- ;
- t1:=mklist(5);
- t1 := {0,0,0,0,0}
- Comment MKLIST does NEVER destroy anything ;
- mklist(t1,10);
- {0,0,0,0,0,0,0,0,0,0}
- mklist(t1,3);
- {0,0,0,0,0}
- ;
- sequences 3;
- {{0,0,0},
- {1,0,0},
- {0,1,0},
- {1,1,0},
- {0,0,1},
- {1,0,1},
- {0,1,1},
- {1,1,1}}
- lisp;
- nil
- sequences 3;
- ((0 0 0) (1 0 0) (0 1 0) (1 1 0) (0 0 1) (1 0 1) (0 1 1) (1 1 1))
- algebraic;
- ;
- for i:=1:5 do t1:= (t1.i:=mkid(a,i));
- t1;
- {a1,
- a2,
- a3,
- a4,
- a5}
- ;
- t1.5;
- a5
- ;
- t1:=(t1.3).t1;
- t1 := {a3,a1,a2,a3,a4,a5}
- ;
- % Notice the blank spaces ! in the following illustration:
- 1 . t1;
- {1,a3,a1,a2,a3,a4,a5}
- ;
- % Splitting of a list:
- split(t1,{1,2,3});
- {{a3},
- {a1,a2},
- {a3,a4,a5}}
-
- ;
- % It truncates the list :
- split(t1,{3});
- {{a3,a1,a2}}
- ;
- % A KERNEL may be coerced to a list:
- kernlist sin x;
- {x}
- ;
- % algnlist constructs a list which contains n-times a given list
- algnlist(t1,2);
- {{a3,
- a1,
- a2,
- a3,
- a4,
- a5},
- {a3,
- a1,
- a2,
- a3,
- a4,
- a5}}
-
- ;
- % Delete :
- delete(x, {a,b,x,f,x});
- {a,b,f,x}
- ;
- % delete_all eliminates ALL occurences of x:
- delete_all(x,{a,b,x,f,x});
- {a,b,f}
- ;
- remove(t1,4);
- {a3,a1,a2,a4,a5}
- ;
- % delpair deletes a pair if it is possible.
- delpair(a1,pair(t1,t1));
- {{a3,a3},
- {a2,a2},
- {a3,a3},
- {a4,a4},
- {a5,a5}}
- ;
-
- elmult(a1,t1);
- 1
- ;
- frequency append(t1,t1);
- {{a3,4},
- {a1,2},
- {a2,2},
- {a4,2},
- {a5,2}}
- ;
- insert(a1,t1,3);
- {a3,a1,a1,a2,a3,a4,a5}
- ;
- li:=list(1,2,5);
- li := {1,2,5}
- ;
- % Not to destroy an already ordered list during insertion:
- insert_keep_order(4,li,lessp);
- {1,2,4,5}
- insert_keep_order(bb,t1,ordp);
- {a3,
- a1,
- a2,
- a3,
- a4,
- a5,
- bb}
- ;
- % the same function when appending two correctly ORDERED lists:
- merge_list(li,li,<);
- {1,1,2,2,5,5}
- ;
- merge_list({5,2,1},{5,2,1},geq);
- {5,5,2,2,1,1}
- ;
- depth list t1;
- 2
- ;
- depth a1;
- 0
- % Any list can be flattened into a list of depth 1:
- mkdepth_one {1,{{a,b,c}},{c,{{d,e}}}};
- {1,
- a,
- b,
- c,
- c,
- d,
- e}
- position(a2,t1);
- 3
- appendn(li,li,li);
- {1,2,5,1,2,5,1,2,5}
- ;
- clear t1,li;
- comment 5. THE BAG STRUCTURE AND OTHER FUNCTION FOR LISTS AND BAGS.
- ;
- aa:=bag(x,1,"A");
- aa := bag(x,1,A)
- putbag bg1,bg2;
- t
- on errcont;
- putbag list;
- ***** list invalid as BAG
- off errcont;
- aa:=bg1(x,y**2);
- 2
- aa := bg1(x,y )
- ;
- if bagp aa then "this is a bag";
- this is a bag
- ;
- % A bag is a composite object:
- clearbag bg2;
- ;
- depth bg2(x);
- 0
- ;
- depth bg1(x);
- 1
- ;
- if baglistp aa then "this is a bag or list";
- this is a bag or list
- if baglistp {x} then "this is a bag or list";
- this is a bag or list
- if bagp {x} then "this is a bag";
- if bagp aa then "this is a bag";
- this is a bag
- ;
- ab:=bag(x1,x2,x3);
- ab := bag(x1,x2,x3)
- al:=list(y1,y2,y3);
- al := {y1,y2,y3}
- % The basic lisp functions are also active for bags:
- first ab;
- bag(x1)
- third ab;
- bag(x3)
- first al;
- y1
- last ab;
- bag(x3)
- last al;
- y3
- belast ab;
- bag(x1,x2)
- belast al;
- {y1,y2}
- belast {a,b,a,b,a};
- {a,b,a,b}
- rest ab;
- bag(x2,x3)
- rest al;
- {y2,y3}
- ;
- % The "dot" plays the role of the function "part":
- ab.1;
- x1
- al.3;
- y3
- on errcont;
- ab.4;
- ***** Expression bag(x1,x2,x3) does not have part 4
- off errcont;
- a.ab;
- bag(a,x1,x2,x3)
- % ... but notice
- 1 . ab;
- bag(1,x1,x2,x3)
- % Coercion from bag to list and list to bag:
- kernlist(aa);
- 2
- {x,y }
- ;
- listbag(list x,bg1);
- bg1(x)
- ;
- length ab;
- 3
- ;
- remove(ab,3);
- bag(x1,x2)
- ;
- delete(y2,al);
- {y1,y3}
- ;
- reverse al;
- {y3,y2,y1}
- ;
- member(x3,ab);
- bag(x3)
- ;
- al:=list(x**2,x**2,y1,y2,y3);
- 2
- al := {x ,
- 2
- x ,
- y1,
- y2,
- y3}
- ;
- elmult(x**2,al);
- 2
- ;
- position(y3,al);
- 5
- ;
- repfirst(xx,al);
- 2
- {xx,x ,y1,y2,y3}
- ;
- represt(xx,ab);
- bag(x1,xx)
- ;
- insert(x,al,3);
- 2 2
- {x ,x ,x,y1,y2,y3}
- insert( b,ab,2);
- bag(x1,b,xx)
- insert(ab,ab,1);
- bag(bag(x1,xx),x1,xx)
- ;
- substitute (new,y1,al);
- 2 2
- {x ,x ,new,y2,y3}
- ;
- appendn(ab,ab,ab);
- {x1,xx,x1,xx,x1,xx}
- ;
- append(ab,al);
- 2 2
- bag(x1,xx,x ,x ,y1,y2,y3)
- append(al,ab);
- 2 2
- {x ,x ,y1,y2,y3,x1,xx}
- clear ab;
- a1;
- a1
- ;
- comment Association list or bag may be constructed and thoroughly used;
- ;
- l:=list(a1,a2,a3,a4);
- l := {a1,a2,a3,a4}
- b:=bg1(x1,x2,x3);
- b := bg1(x1,x2,x3)
- al:=pair(list(1,2,3,4),l);
- al := {{1,a1},{2,a2},{3,a3},{4,a4}}
- ab:=pair(bg1(1,2,3),b);
- ab := bg1(bg1(1,x1),bg1(2,x2),bg1(3,x3))
- ;
- clear b;
- comment : A BOOLEAN function abaglistp to test if it is an association;
- ;
- if abaglistp bag(bag(1,2)) then "it is an associated bag";
- it is an associated bag
- ;
- % Values associated to the keys can be extracted
- % first occurence ONLY.
- ;
- asfirst(1,al);
- {1,a1}
- asfirst(3,ab);
- bg1(3,x3)
- ;
- assecond(a1,al);
- {1,a1}
- assecond(x3,ab);
- bg1(3,x3)
- ;
- aslast(z,list(list(x1,x2,x3),list(y1,y2,z)));
- {y1,y2,z}
- asrest(list(x2,x3),list(list(x1,x2,x3),list(y1,y2,z)));
- {x1,x2,x3}
- ;
- clear a1;
- ;
- % All occurences.
- asflist(x,bg1(bg1(x,a1,a2),bg1(x,b1,b2)));
- bg1(bg1(x,a1,a2),bg1(x,b1,b2))
- asslist(a1,list(list(x,a1),list(y,a1),list(x,y)));
- {{x,a1},{y,a1}}
- restaslist(bag(a1,x),bg1(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));
- bg1(bg1(x,b2),bg1(a1,a2))
- restaslist(list(a1,x),bag(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z)));
- bag(bag(x,b2),bag(a1,a2))
- ;
- Comment 6. SETS AND THEIR MANIPULATION FUNCTIONS
- ;
- ts:=mkset list(a1,a1,a,2,2);
- ts := {a1,a,2}
- if setp ts then "this is a SET";
- this is a SET
- ;
- union(ts,ts);
- {a1,a,2}
- ;
- diffset(ts,list(a1,a));
- {2}
- diffset(list(a1,a),ts);
- {}
- ;
- symdiff(ts,ts);
- {}
- ;
- intersect(listbag(ts,set1),listbag(ts,set2));
- set1(a1,a,2)
- Comment 7. GENERAL PURPOSE UTILITY FUNCTIONS :;
- ;
- clear a1,a2,a3,a,x,y,z,x1,x2,op$
- ;
- % DETECTION OF A GIVEN VARIABLE IN A GIVEN SET
- ;
- mkidnew();
- g0
- mkidnew(a);
- ag1
- ;
- dellastdigit 23;
- 2
- ;
- detidnum aa;
- detidnum a10;
- 10
- detidnum a1b2z34;
- 34
- ;
- list_to_ids list(a,1,rr,22);
- a1rr22
- ;
- if oddp 3 then "this is an odd integer";
- this is an odd integer
- ;
- <<prin2 1; followline 7; prin2 8;>>;
- 1
- 8
- ;
- operator foo;
- foo(x):=x;
- foo(x) := x
- foo(x)==value;
- value
- x;
- value
- % it is equal to value
- clear x;
- ;
- randomlist(10,20);
- {8,1,8,0,5,7,3,8,0,5,5,9,0,5,2,0,7,5,5,1}
- % Generation of tables of random numbers:
- % One dimensional:
- mkrandtabl({4},10,ar);
- {4}
- array_to_list ar;
- {5,4,4,7}
- ;
- % Two dimensional:
- mkrandtabl({3,4},10,ar);
- *** array ar redefined
- {3,4}
- array_to_list ar;
- {{9,5,2,8},{7,3,5,2},{8,1,6,0}}
-
- ;
- % With a base which is a decimal number:
- on rounded;
- mkrandtabl({5},3.5,ar);
- *** array ar redefined
- {5}
- array_to_list ar;
- {2.77546499305,1.79693268486,3.43100115041,2.11636272025,3.45447023392}
- off rounded;
- ;
- % Combinatorial functions :
- permutations(bag(a1,a2,a3));
- bag(bag(a1,a2,a3),bag(a1,a3,a2),bag(a2,a1,a3),bag(a2,a3,a1),bag(a3,a1,a2),
- bag(a3,a2,a1))
- permutations {1,2,3};
- {{1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}}
- ;
- cyclicpermlist{1,2,3};
- {{1,2,3},{2,3,1},{3,1,2}}
- ;
- combnum(8,3);
- 56
- ;
- combinations({1,2,3},2);
- {{2,3},{1,3},{1,2}}
- ;
- perm_to_num({3,2,1,4},{1,2,3,4});
- 5
- num_to_perm(5,{1,2,3,4});
- {3,2,1,4}
- ;
- operator op;
- symmetric op;
- op(x,y)-op(y,x);
- 0
- remsym op;
- op(x,y)-op(y,x);
- op(x,y) - op(y,x)
- ;
- labc:={a,b,c};
- labc := {a,b,c}
- symmetrize(labc,foo,cyclicpermlist);
- foo(a,b,c) + foo(b,c,a) + foo(c,a,b)
- symmetrize(labc,list,permutations);
- {a,b,c} + {a,c,b} + {b,a,c} + {b,c,a} + {c,a,b} + {c,b,a}
- symmetrize({labc},foo,cyclicpermlist);
- foo({a,b,c}) + foo({b,c,a}) + foo({c,a,b})
- ;
- extremum({1,2,3},lessp);
- 1
- extremum({1,2,3},geq);
- 3
- extremum({a,b,c},nordp);
- c
- ;
- funcvar(x+y);
- {x,y}
- funcvar(sin log(x+y));
- {x,y}
- funcvar(sin pi);
- funcvar(x+e+i);
- {x}
- funcvar sin(x+i*y);
- {y,x}
- ;
- operator op;
- *** op already defined as operator
- noncom op;
- op(0)*op(x)-op(x)*op(0);
- - op(x)*op(0) + op(0)*op(x)
- remnoncom op;
- t
- op(0)*op(x)-op(x)*op(0);
- 0
- clear op;
- ;
- depatom a;
- a
- depend a,x,y;
- depatom a;
- {x,y}
- ;
- depend op,x,y,z;
- ;
- implicit op;
- op
- explicit op;
- op(x,y,z)
- depend y,zz;
- explicit op;
- op(x,y(zz),z)
- aa:=implicit op;
- aa := op
- clear op;
- ;
- korder x,z,y;
- korderlist;
- (x z y)
- ;
- if checkproplist({1,2,3},fixp) then "it is a list of integers";
- it is a list of integers
- ;
- if checkproplist({a,b1,c},idp) then "it is a list of identifiers";
- it is a list of identifiers
- ;
- if checkproplist({1,b1,c},idp) then "it is a list of identifiers";
- ;
- lmix:={1,1/2,a,"st"};
- 1
- lmix := {1,---,a,st}
- 2
- ;
- extractlist(lmix,fixp);
- {1}
- extractlist(lmix,numberp);
- 1
- {1,---}
- 2
- extractlist(lmix,idp);
- {a}
- extractlist(lmix,stringp);
- {st}
- ;
- % From a list to an array:
- list_to_array({a,b,c,d},1,ar);
- *** array ar redefined
- array_to_list ar;
- {a,b,c,d}
-
- list_to_array({{a},{b},{c},{d}},2,ar);
- *** array ar redefined
- ;
- comment 8. PROPERTIES AND FLAGS:;
- ;
- putflag(list(a1,a2),fl1,t);
- t
- putflag(list(a1,a2),fl2,t);
- t
- displayflag a1;
- {fl1,fl2}
- ;
- clearflag a1,a2;
- displayflag a2;
- {}
- putprop(x1,propname,value,t);
- x1
- displayprop(x1,prop);
- {}
- displayprop(x1,propname);
- {propname,value}
- ;
- putprop(x1,propname,value,0);
- displayprop(x1,propname);
- {}
- ;
- Comment 9. CONTROL FUNCTIONS:;
- ;
- alatomp z;
- t
- z:=s1;
- z := s1
- alatomp z;
- t
- ;
- alkernp z;
- t
- alkernp log sin r;
- t
- ;
- precp(difference,plus);
- t
- precp(plus,difference);
- precp(times,.);
- precp(.,times);
- t
- ;
- if stringp x then "this is a string";
- if stringp "this is a string" then "this is a string";
- this is a string
- ;
- if nordp(b,a) then "a is ordered before b";
- a is ordered before b
- operator op;
- for all x,y such that nordp(x,y) let op(x,y)=x+y;
- op(a,a);
- op(a,a)
- op(b,a);
- a + b
- op(a,b);
- op(a,b)
- clear op;
- ;
- depvarp(log(sin(x+cos(1/acos rr))),rr);
- t
- ;
- clear y,x,u,v;
- clear op;
- ;
- % DISPLAY and CLEARING of user's objects of various types entered
- % to the console. Only TOP LEVEL assignments are considered up to now.
- % The following statements must be made INTERACTIVELY. We put them
- % as COMMENTS for the user to experiment with them. We do this because
- % in a fresh environment all outputs are nil.
- ;
- % THIS PART OF THE TEST SHOULD BE REALIZED INTERACTIVELY.
- % SEE THE ** ASSIST LOG ** FILE .
- %v1:=v2:=1;
- %show scalars;
- %aa:=list(a);
- %show lists;
- %array ar(2);
- %show arrays;
- %load matr$
- %matrix mm;
- %show matrices;
- %x**2;
- %saveas res;
- %show saveids;
- %suppress scalars;
- %show scalars;
- %show lists;
- %suppress all;
- %show arrays;
- %show matrices;
- ;
- comment end of the interactive part;
- ;
- clear op;
- operator op;
- op(x,y,z);
- op(x,y,s1)
- clearop op;
- t
- ;
- clearfunctions abs,tan;
- *** abs is unprotected : Cleared ***
- *** tan is a protected function: NOT cleared ***
- "Clearing is complete"
- ;
- comment THIS FUNCTION MUST BE USED WITH CARE !!!!!;
- ;
- Comment 10. HANDLING OF POLYNOMIALS
- clear x,y,z;
- COMMENT To see the internal representation :;
- ;
- off pri;
- ;
- pol:=(x-2*y+3*z**2-1)**3;
- 3 2 2 2 2 4
- pol := x + x *( - 6*y + 9*s1 - 3) + x*(12*y + y*( - 36*s1 + 12) + 27*s1 -
- 2 3 2 2 4 2
- 18*s1 + 3) - 8*y + y *(36*s1 - 12) + y*( - 54*s1 + 36*s1 - 6) + 27*
- 6 4 2
- s1 - 27*s1 + 9*s1 - 1
- ;
- pold:=distribute pol;
- 6 4 2 3 2 2 2 2 2
- pold := 27*s1 - 27*s1 + 9*s1 + x - 6*x *y + 9*x *s1 - 3*x + 12*x*y + 27*x
- 4 2 2 3 2 2 2
- *s1 - 18*x*s1 - 36*x*y*s1 + 12*x*y + 3*x - 8*y + 36*y *s1 - 12*y -
- 4 2
- 54*y*s1 + 36*y*s1 - 6*y - 1
- ;
- on distribute;
- leadterm (pold);
- 6
- 27*s1
- pold:=redexpr pold;
- 4 2 3 2 2 2 2 2 4
- pold := - 27*s1 + 9*s1 + x - 6*x *y + 9*x *s1 - 3*x + 12*x*y + 27*x*s1 -
- 2 2 3 2 2 2
- 18*x*s1 - 36*x*y*s1 + 12*x*y + 3*x - 8*y + 36*y *s1 - 12*y - 54*y*
- 4 2
- s1 + 36*y*s1 - 6*y - 1
- leadterm pold;
- 4
- - 27*s1
- ;
- off distribute;
- polp:=pol$
- leadterm polp;
- 3
- x
- polp:=redexpr polp;
- 2 2 2 2 4
- polp := x *( - 6*y + 9*s1 - 3) + x*(12*y + y*( - 36*s1 + 12) + 27*s1 - 18*s1
- 2 3 2 2 4 2 6
- + 3) - 8*y + y *(36*s1 - 12) + y*( - 54*s1 + 36*s1 - 6) + 27*s1 -
- 4 2
- 27*s1 + 9*s1 - 1
- leadterm polp;
- 2 2
- x *( - 6*y + 9*s1 - 3)
- ;
- monom polp;
- 6
- {27*s1 ,
- 4
- - 27*s1 ,
- 2
- 9*s1 ,
- 2
- - 6*x *y,
- 2 2
- 9*x *s1 ,
- 2
- - 3*x ,
- 2
- 12*x*y ,
- 4
- 27*x*s1 ,
- 2
- - 18*x*s1 ,
- 2
- - 36*x*y*s1 ,
- 12*x*y,
- 3*x,
- 3
- - 8*y ,
- 2 2
- 36*y *s1 ,
- 2
- - 12*y ,
- 4
- - 54*y*s1 ,
- 2
- 36*y*s1 ,
- - 6*y,
- -1}
- ;
- on pri;
- ;
- splitterms polp;
- 2 2
- {{9*s1 *x ,
- 2
- 12*x*y ,
- 12*x*y,
- 4
- 27*s1 *x,
- 3*x,
- 2 2
- 36*s1 *y ,
- 2
- 36*s1 *y,
- 6
- 27*s1 ,
- 2
- 9*s1 },
- 2
- {6*x *y,
- 2
- 3*x ,
- 2
- 36*s1 *x*y,
- 2
- 18*s1 *x,
- 3
- 8*y ,
- 2
- 12*y ,
- 4
- 54*s1 *y,
- 6*y,
- 4
- 27*s1 ,
- 1}}
- ;
- splitplusminus polp;
- 6 4 2 2 2 2 2 2 2
- {3*(9*s1 + 9*s1 *x + 3*s1 *x + 12*s1 *y + 12*s1 *y + 3*s1 + 4*x*y + 4*x*y
- + x),
- 4 4 2 2 2 2 3 2
- - 54*s1 *y - 27*s1 - 36*s1 *x*y - 18*s1 *x - 6*x *y - 3*x - 8*y - 12*y
- - 6*y - 1}
- ;
- divpol(pol,x+2*y+3*z**2);
- 4 2 2 2 2 2
- {9*s1 + 6*s1 *x - 24*s1 *y - 9*s1 + x - 8*x*y - 3*x + 28*y + 18*y + 3,
- 3 2
- - 64*y - 48*y - 12*y - 1}
- ;
- lowestdeg(pol,y);
- 0
- ;
- Comment 11. HANDLING OF SOME TRANSCENDENTAL FUNCTIONS:;
- ;
- trig:=((sin x)**2+(cos x)**2)**4;
- trig :=
- 8 6 2 4 4 2 6 8
- cos(x) + 4*cos(x) *sin(x) + 6*cos(x) *sin(x) + 4*cos(x) *sin(x) + sin(x)
- trigreduce trig;
- 1
- trig:=sin (5x);
- trig := sin(5*x)
- trigexpand trig;
- 4 2 2 4
- sin(x)*(5*cos(x) - 10*cos(x) *sin(x) + sin(x) )
- trigreduce ws;
- sin(5*x)
- trigexpand sin(x+y+z);
- cos(s1)*cos(x)*sin(y) + cos(s1)*cos(y)*sin(x) + cos(x)*cos(y)*sin(s1)
- - sin(s1)*sin(x)*sin(y)
- ;
- ;
- hypreduce (sinh x **2 -cosh x **2);
- -1
- ;
- ;
- clear a,b,c,d;
- ;
- Comment 13. HANDLING OF N-DIMENSIONAL VECTORS:;
- ;
- clear u1,u2,v1,v2,v3,v4,w3,w4;
- u1:=list(v1,v2,v3,v4);
- u1 := {v1,v2,v3,v4}
- u2:=bag(w1,w2,w3,w4);
- u2 := bag(w1,w2,w3,w4)
- %
- sumvect(u1,u2);
- {v1 + w1,
- v2 + w2,
- v3 + w3,
- v4 + w4}
- minvect(u2,u1);
- bag( - v1 + w1, - v2 + w2, - v3 + w3, - v4 + w4)
- scalvect(u1,u2);
- v1*w1 + v2*w2 + v3*w3 + v4*w4
- crossvect(rest u1,rest u2);
- {v3*w4 - v4*w3,
- - v2*w4 + v4*w2,
- v2*w3 - v3*w2}
- mpvect(rest u1,rest u2, minvect(rest u1,rest u2));
- 0
- scalvect(crossvect(rest u1,rest u2),minvect(rest u1,rest u2));
- 0
- ;
- Comment 14. HANDLING OF GRASSMANN OPERATORS:;
- ;
- putgrass eta,eta1;
- grasskernel:=
- {eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
- (~x)*(~x) => 0 when grassp x};
- grasskernel := {eta(~x)*eta(~y) => - eta(y)*eta(x) when nordp(x,y),
- ~x*~x => 0 when grassp(x)}
- ;
- eta(y)*eta(x);
- eta(y)*eta(x)
- eta(y)*eta(x) where grasskernel;
- - eta(x)*eta(y)
- let grasskernel;
- eta(x)^2;
- 0
- eta(y)*eta(x);
- - eta(x)*eta(y)
- operator zz;
- grassparity (eta(x)*zz(y));
- 1
- grassparity (eta(x)*eta(y));
- 0
- grassparity(eta(x)+zz(y));
- parity undefined
- clearrules grasskernel;
- grasskernel:=
- {eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
- eta1(~x)*eta(~y) => -eta x * eta1 y,
- eta1(~x)*eta1(~y) => -eta1 y * eta1 x when nordp(x,y),
- (~x)*(~x) => 0 when grassp x};
- grasskernel := {eta(~x)*eta(~y) => - eta(y)*eta(x) when nordp(x,y),
- eta1(~x)*eta(~y) => - eta(x)*eta1(y),
- eta1(~x)*eta1(~y) => - eta1(y)*eta1(x) when nordp(x,y),
- ~x*~x => 0 when grassp(x)}
- ;
- let grasskernel;
- eta1(x)*eta(x)*eta1(z)*eta1(w);
- - eta(x)*eta1(s1)*eta1(w)*eta1(x)
- clearrules grasskernel;
- remgrass eta,eta1;
- clearop zz;
- t
- ;
- Comment 15. HANDLING OF MATRICES:;
- ;
- clear m,mm,b,b1,bb,cc,a,b,c,d,a1,a2;
- load_package matrix;
- baglmat(bag(bag(a1,a2)),m);
- t
- m;
- [a1 a2]
- on errcont;
- ;
- baglmat(bag(bag(a1),bag(a2)),m);
- ***** (mat ((*sq ((((a1 . 1) . 1)) . 1) t) (*sq ((((a2 . 1) . 1)) . 1) t)))
- should be an identifier
- off errcont;
- % **** i.e. it cannot redefine the matrix! in order
- % to avoid accidental redefinition of an already given matrix;
- clear m;
- baglmat(bag(bag(a1),bag(a2)),m);
- t
- m;
- [a1]
- [ ]
- [a2]
- on errcont;
- baglmat(bag(bag(a1),bag(a2)),bag);
- ***** operator bag invalid as matrix
- off errcont;
- comment Right since a bag-like object cannot become a matrix.;
- ;
- coercemat(m,op);
- op(op(a1),op(a2))
- coercemat(m,list);
- {{a1},{a2}}
- ;
- on nero;
- unitmat b1(2);
- matrix b(2,2);
- b:=mat((r1,r2),(s1,s2));
- [r1 r2]
- b := [ ]
- [s1 s2]
- b1;
- [1 0]
- [ ]
- [0 1]
- b;
- [r1 r2]
- [ ]
- [s1 s2]
- mkidm(b,1);
- [1 0]
- [ ]
- [0 1]
- ;
- seteltmat(b,newelt,2,2);
- [r1 r2 ]
- [ ]
- [s1 newelt]
- geteltmat(b,2,1);
- s1
- %
- b:=matsubr(b,bag(1,2),2);
- [r1 r2]
- b := [ ]
- [1 2 ]
- ;
- submat(b,1,2);
- [1]
- ;
- bb:=mat((1+i,-i),(-1+i,-i));
- [i + 1 - i]
- bb := [ ]
- [i - 1 - i]
- cc:=matsubc(bb,bag(1,2),2);
- [i + 1 1]
- cc := [ ]
- [i - 1 2]
- ;
- cc:=tp matsubc(bb,bag(1,2),2);
- [i + 1 i - 1]
- cc := [ ]
- [ 1 2 ]
- matextr(bb, bag,1);
- bag(i + 1, - i)
- ;
- matextc(bb,list,2);
- { - i, - i}
- ;
- hconcmat(bb,cc);
- [i + 1 - i i + 1 i - 1]
- [ ]
- [i - 1 - i 1 2 ]
- vconcmat(bb,cc);
- [i + 1 - i ]
- [ ]
- [i - 1 - i ]
- [ ]
- [i + 1 i - 1]
- [ ]
- [ 1 2 ]
- ;
- tpmat(bb,bb);
- [ 2*i - i + 1 - i + 1 -1]
- [ ]
- [ -2 - i + 1 i + 1 -1]
- [ ]
- [ -2 i + 1 - i + 1 -1]
- [ ]
- [ - 2*i i + 1 i + 1 -1]
- bb tpmat bb;
- [ 2*i - i + 1 - i + 1 -1]
- [ ]
- [ -2 - i + 1 i + 1 -1]
- [ ]
- [ -2 i + 1 - i + 1 -1]
- [ ]
- [ - 2*i i + 1 i + 1 -1]
- ;
- clear hbb;
- hermat(bb,hbb);
- [ - i + 1 - (i + 1)]
- [ ]
- [ i i ]
- % id hbb changed to a matrix id and assigned to the hermitian matrix
- % of bb.
- ;
- load_package HEPHYS;
- % Use of remvector.
- ;
- vector v1,v2;
- v1.v2;
- v1.v2
- remvector v1,v2;
- on errcont;
- v1.v2;
- ***** v1 v2 invalid as list or bag
- off errcont;
- % To see the compatibility with ASSIST:
- v1.{v2};
- {v1,v2}
- ;
- index u;
- vector v;
- (v.u)^2;
- v.v
- remindex u;
- t
- (v.u)^2;
- 2
- u.v
- ;
- % Gamma matrices properties may be translated to any identifier:
- clear l,v;
- vector v;
- g(l,v,v);
- v.v
- mkgam(op,t);
- t
- op(l,v,v);
- v.v
- mkgam(g,0);
- operator g;
- g(l,v,v);
- g(l,v,v)
- ;
- clear g,op;
- ;
- % showtime;
- end;
- Time for test: 1561 ms, plus GC time: 90 ms
|