123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- Sun Aug 18 17:25:40 2002 run on Windows
- off echo, dfprint$
- -------------------------------------------------------
- This file is supposed to provide an automatic test of
- the program APPLYSYM. On the other hand the application
- of APPLYSYM is an interactive process, therefore the
- interested user should inspect the example described
- in APPLYSYM.TEX which demonstrates the application
- of symmetries to integrate a 2nd order ODE.
- Here the program QUASILINPDE for integrating first
- order quasilinear PDE is demonstrated.
- The following equation comes up in the elimination
- of resonant terms in normal forms of singularities
- of vector fields (C.Herssens, P.Bonckaert, Limburgs
- Universitair Centrum/Belgium, private communication).
- -------------------------------------------------------
- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*y + 2*df(w,z)*z - 2*w - x*y.
- The general solution of the PDE is given through
- x*y - log(z)*x*y + 2*w y
- 0 = ff(-----,---------------------,---------)
- z z sqrt(z)
- with arbitrary function ff(..).
- -------------------------------------------------------
- Comment:
- The result means that w is defined implicitly through
- x*y - log(z)*x*y + 2*w y
- 0 = ff(-----,---------------------,---------)
- z z sqrt(z)
- with an arbitrary function ff of 3 arguments. As the PDE
- was linear, the arguments of ff are such that we can
- solve for w:
- x*y y
- w = log(z)*x*y/2 + z*f(-----,---------)
- z sqrt(z)
- with an arbitrary function f of 2 arguments.
- -------------------------------------------------------
- The following PDEs are taken from E. Kamke,
- Loesungsmethoden und Loesungen von Differential-
- gleichungen, Partielle Differentialgleichungen
- erster Ordnung, B.G. Teubner, Stuttgart (1979).
- ------------------- equation 1.4 ----------------------
- The quasilinear PDE: 0 = df(z,x)*x - y.
- The general solution of the PDE is given through
- 0 = ff(log(x)*y - z,y)
- with arbitrary function ff(..).
- ------------------- equation 2.5 ----------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y .
- The general solution of the PDE is given through
- - x + y
- 0 = ff(----------,z)
- x*y
- with arbitrary function ff(..).
- ------------------- equation 2.6 ----------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*x - df(z,x)*y + 2*df(z,y)*x*y.
- The general solution of the PDE is given through
- 2 2
- - x - y
- 0 = ff(------------,z)
- y
- with arbitrary function ff(..).
- ------------------- equation 2.7 ----------------------
- The quasilinear PDE: 0 = df(z,x)*a0*x - df(z,x)*a1 + df(z,y)*a0*y - df(z,y)*a2.
- The general solution of the PDE is given through
- a1*y - a2*x
- 0 = ff(---------------,z)
- 2
- a0*a1*x - a1
- with arbitrary function ff(..).
- ------------------- equation 2.14 ---------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*b - x + y .
- The general solution of the PDE is given through
- 2 3 2 3 2 2 2 3 a*y - b*x
- 0 = ff(a *y - 3*a*b*x*y - 3*b *z + 3*b *x *y - b *y ,-----------)
- b
- with arbitrary function ff(..).
- ------------------- equation 2.16 ---------------------
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - a*x.
- The general solution of the PDE is given through
- - a*x
- 0 = ff(--------,a*x - z)
- y
- with arbitrary function ff(..).
- ------------------- equation 2.20 ---------------------
- The quasilinear PDE: 0 = df(z,x) + df(z,y) - a*z.
- The general solution of the PDE is given through
- z
- 0 = ff(------,x - y)
- a*x
- e
- with arbitrary function ff(..).
- ------------------- equation 2.21 ---------------------
- The quasilinear PDE: 0 = df(z,x) - df(z,y)*y + z.
- The general solution of the PDE is given through
- x x
- 0 = ff(e *z,e *y)
- with arbitrary function ff(..).
- ------------------- equation 2.22 ---------------------
- The quasilinear PDE: 0 = 2*df(z,x) - df(z,y)*y + z.
- The general solution of the PDE is given through
- x/2 x/2
- 0 = ff(e *z,e *y)
- with arbitrary function ff(..).
- ------------------- equation 2.23 ---------------------
- The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*y - b*z.
- The general solution of the PDE is given through
- z y
- 0 = ff(----------,------)
- (b*x)/a x/a
- e e
- with arbitrary function ff(..).
- ------------------- equation 2.24 ---------------------
- The quasilinear PDE: 0 = df(z,x)*x - df(z,y)*x - df(z,y)*y.
- The general solution of the PDE is given through
- 2
- 0 = ff(x + 2*x*y,z)
- with arbitrary function ff(..).
- ------------------- equation 2.25 ---------------------
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - az.
- The general solution of the PDE is given through
- y x
- 0 = ff(-------,-------)
- z/az z/az
- e e
- with arbitrary function ff(..).
- ------------------- equation 2.26 ---------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y + x + y - z - 1.
- The general solution of the PDE is given through
- 2 2
- x + y + z + 1 x
- 0 = ff(-----------------,---)
- y y
- with arbitrary function ff(..).
- ------------------- equation 2.39 ---------------------
- 2 2 2
- The quasilinear PDE: 0 = df(z,x)*a*x + df(z,y)*b*y - c*z .
- The general solution of the PDE is given through
- b*y - c*z - a*x + b*y
- 0 = ff(-----------,--------------)
- b*y*z b*x*y
- with arbitrary function ff(..).
- ------------------- equation 2.40 ---------------------
- 2 3 4 2
- The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x + 4*x *y*z
- 2 2
- - 2*y *z .
- ------------------- equation 3.12 ---------------------
- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y + df(w,z)*c*x
- + df(w,z)*d*y + df(w,z)*f*z.
- The general solution of the PDE is given through
- f 1 (f + 1)/b 2 f 1 (f + 1)/b
- 0 = ff(( - x *(----) *b*c*x - x *(----) *b*d*x*y
- b b
- x x
- f 1 (f + 1)/b 2 f 1 (f + 1)/b
- + x *(----) *c*x + x *(----) *d*x*y - a*d*x + b*c*x
- b b
- x x
- b b f 1 (f + 1)/b
- - c*x)/(x *b - x ),( - x *(----) *b*f*x*z
- b
- x
- f 1 (f + 1)/b f 1 (f + 1)/b 2
- + x *(----) *b*x*z + x *(----) *c*f*x
- b b
- x x
- f 1 (f + 1)/b 2 f 1 (f + 1)/b
- - x *(----) *c*x + x *(----) *d*f*x*y
- b b
- x x
- f 1 (f + 1)/b f 1 (f + 1)/b 2
- - x *(----) *d*x*y + x *(----) *f *x*z
- b b
- x x
- f 1 (f + 1)/b f f
- - x *(----) *f*x*z + a*d*x - b*c*x + c*x)/(x *b*f - x *b
- b
- x
- f 2 f
- - x *f + x *f),w)
- with arbitrary function ff(..).
- ------------------------ end --------------------------
- Time for test: 204105 ms, plus GC time: 30875 ms
|