applysym.rlg 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. Sun Aug 18 17:25:40 2002 run on Windows
  2. off echo, dfprint$
  3. -------------------------------------------------------
  4. This file is supposed to provide an automatic test of
  5. the program APPLYSYM. On the other hand the application
  6. of APPLYSYM is an interactive process, therefore the
  7. interested user should inspect the example described
  8. in APPLYSYM.TEX which demonstrates the application
  9. of symmetries to integrate a 2nd order ODE.
  10. Here the program QUASILINPDE for integrating first
  11. order quasilinear PDE is demonstrated.
  12. The following equation comes up in the elimination
  13. of resonant terms in normal forms of singularities
  14. of vector fields (C.Herssens, P.Bonckaert, Limburgs
  15. Universitair Centrum/Belgium, private communication).
  16. -------------------------------------------------------
  17. The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*y + 2*df(w,z)*z - 2*w - x*y.
  18. The general solution of the PDE is given through
  19. x*y - log(z)*x*y + 2*w y
  20. 0 = ff(-----,---------------------,---------)
  21. z z sqrt(z)
  22. with arbitrary function ff(..).
  23. -------------------------------------------------------
  24. Comment:
  25. The result means that w is defined implicitly through
  26. x*y - log(z)*x*y + 2*w y
  27. 0 = ff(-----,---------------------,---------)
  28. z z sqrt(z)
  29. with an arbitrary function ff of 3 arguments. As the PDE
  30. was linear, the arguments of ff are such that we can
  31. solve for w:
  32. x*y y
  33. w = log(z)*x*y/2 + z*f(-----,---------)
  34. z sqrt(z)
  35. with an arbitrary function f of 2 arguments.
  36. -------------------------------------------------------
  37. The following PDEs are taken from E. Kamke,
  38. Loesungsmethoden und Loesungen von Differential-
  39. gleichungen, Partielle Differentialgleichungen
  40. erster Ordnung, B.G. Teubner, Stuttgart (1979).
  41. ------------------- equation 1.4 ----------------------
  42. The quasilinear PDE: 0 = df(z,x)*x - y.
  43. The general solution of the PDE is given through
  44. 0 = ff(log(x)*y - z,y)
  45. with arbitrary function ff(..).
  46. ------------------- equation 2.5 ----------------------
  47. 2 2
  48. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y .
  49. The general solution of the PDE is given through
  50. - x + y
  51. 0 = ff(----------,z)
  52. x*y
  53. with arbitrary function ff(..).
  54. ------------------- equation 2.6 ----------------------
  55. 2 2
  56. The quasilinear PDE: 0 = df(z,x)*x - df(z,x)*y + 2*df(z,y)*x*y.
  57. The general solution of the PDE is given through
  58. 2 2
  59. - x - y
  60. 0 = ff(------------,z)
  61. y
  62. with arbitrary function ff(..).
  63. ------------------- equation 2.7 ----------------------
  64. The quasilinear PDE: 0 = df(z,x)*a0*x - df(z,x)*a1 + df(z,y)*a0*y - df(z,y)*a2.
  65. The general solution of the PDE is given through
  66. a1*y - a2*x
  67. 0 = ff(---------------,z)
  68. 2
  69. a0*a1*x - a1
  70. with arbitrary function ff(..).
  71. ------------------- equation 2.14 ---------------------
  72. 2 2
  73. The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*b - x + y .
  74. The general solution of the PDE is given through
  75. 2 3 2 3 2 2 2 3 a*y - b*x
  76. 0 = ff(a *y - 3*a*b*x*y - 3*b *z + 3*b *x *y - b *y ,-----------)
  77. b
  78. with arbitrary function ff(..).
  79. ------------------- equation 2.16 ---------------------
  80. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - a*x.
  81. The general solution of the PDE is given through
  82. - a*x
  83. 0 = ff(--------,a*x - z)
  84. y
  85. with arbitrary function ff(..).
  86. ------------------- equation 2.20 ---------------------
  87. The quasilinear PDE: 0 = df(z,x) + df(z,y) - a*z.
  88. The general solution of the PDE is given through
  89. z
  90. 0 = ff(------,x - y)
  91. a*x
  92. e
  93. with arbitrary function ff(..).
  94. ------------------- equation 2.21 ---------------------
  95. The quasilinear PDE: 0 = df(z,x) - df(z,y)*y + z.
  96. The general solution of the PDE is given through
  97. x x
  98. 0 = ff(e *z,e *y)
  99. with arbitrary function ff(..).
  100. ------------------- equation 2.22 ---------------------
  101. The quasilinear PDE: 0 = 2*df(z,x) - df(z,y)*y + z.
  102. The general solution of the PDE is given through
  103. x/2 x/2
  104. 0 = ff(e *z,e *y)
  105. with arbitrary function ff(..).
  106. ------------------- equation 2.23 ---------------------
  107. The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*y - b*z.
  108. The general solution of the PDE is given through
  109. z y
  110. 0 = ff(----------,------)
  111. (b*x)/a x/a
  112. e e
  113. with arbitrary function ff(..).
  114. ------------------- equation 2.24 ---------------------
  115. The quasilinear PDE: 0 = df(z,x)*x - df(z,y)*x - df(z,y)*y.
  116. The general solution of the PDE is given through
  117. 2
  118. 0 = ff(x + 2*x*y,z)
  119. with arbitrary function ff(..).
  120. ------------------- equation 2.25 ---------------------
  121. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - az.
  122. The general solution of the PDE is given through
  123. y x
  124. 0 = ff(-------,-------)
  125. z/az z/az
  126. e e
  127. with arbitrary function ff(..).
  128. ------------------- equation 2.26 ---------------------
  129. 2 2
  130. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y + x + y - z - 1.
  131. The general solution of the PDE is given through
  132. 2 2
  133. x + y + z + 1 x
  134. 0 = ff(-----------------,---)
  135. y y
  136. with arbitrary function ff(..).
  137. ------------------- equation 2.39 ---------------------
  138. 2 2 2
  139. The quasilinear PDE: 0 = df(z,x)*a*x + df(z,y)*b*y - c*z .
  140. The general solution of the PDE is given through
  141. b*y - c*z - a*x + b*y
  142. 0 = ff(-----------,--------------)
  143. b*y*z b*x*y
  144. with arbitrary function ff(..).
  145. ------------------- equation 2.40 ---------------------
  146. 2 3 4 2
  147. The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x + 4*x *y*z
  148. 2 2
  149. - 2*y *z .
  150. ------------------- equation 3.12 ---------------------
  151. The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y + df(w,z)*c*x
  152. + df(w,z)*d*y + df(w,z)*f*z.
  153. The general solution of the PDE is given through
  154. f 1 (f + 1)/b 2 f 1 (f + 1)/b
  155. 0 = ff(( - x *(----) *b*c*x - x *(----) *b*d*x*y
  156. b b
  157. x x
  158. f 1 (f + 1)/b 2 f 1 (f + 1)/b
  159. + x *(----) *c*x + x *(----) *d*x*y - a*d*x + b*c*x
  160. b b
  161. x x
  162. b b f 1 (f + 1)/b
  163. - c*x)/(x *b - x ),( - x *(----) *b*f*x*z
  164. b
  165. x
  166. f 1 (f + 1)/b f 1 (f + 1)/b 2
  167. + x *(----) *b*x*z + x *(----) *c*f*x
  168. b b
  169. x x
  170. f 1 (f + 1)/b 2 f 1 (f + 1)/b
  171. - x *(----) *c*x + x *(----) *d*f*x*y
  172. b b
  173. x x
  174. f 1 (f + 1)/b f 1 (f + 1)/b 2
  175. - x *(----) *d*x*y + x *(----) *f *x*z
  176. b b
  177. x x
  178. f 1 (f + 1)/b f f
  179. - x *(----) *f*x*z + a*d*x - b*c*x + c*x)/(x *b*f - x *b
  180. b
  181. x
  182. f 2 f
  183. - x *f + x *f),w)
  184. with arbitrary function ff(..).
  185. ------------------------ end --------------------------
  186. Time for test: 204105 ms, plus GC time: 30875 ms