12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685 |
- module symdata1; % Data for symmetry package, part 1.
- % Author: Karin Gatermann <Gatermann@sc.ZIB-Berlin.de>.
- set!*elems!*group('z2,'(id sz2))$
- set!*generators('z2,'(sz2))$
- set!*relations('z2,'(((sz2 sz2) (id))))$
- set!*grouptable('z2,'((grouptable id sz2) (id id sz2) (sz2 sz2 id)))$
- set!*inverse('z2,'((id sz2) (id sz2)))$
- set!*elemasgen('z2,'(((sz2) (sz2))))$
- set!*group('z2,'((id) (sz2)))$
- set!*representation('z2,'((id (((1 . 1)))) (sz2 (((1 . 1))))),'complex)$
- set!*representation('z2,
- '((id (((1 . 1)))) (sz2 (((-1 . 1))))),'complex)$
- set!*representation('z2,
- '(realtype (id (((1 . 1)))) (sz2 (((1 . 1))))),'real)$
- set!*representation('z2,
- '(realtype (id (((1 . 1)))) (sz2 (((-1 . 1))))),'real)$
- set!*available 'z2$
- set!*elems!*group('k4,'(id s1k4 s2k4 rk4))$
- set!*generators('k4,'(s1k4 s2k4))$
- set!*relations('k4,
- '(((s1k4 s1k4) (id))
- ((s2k4 s2k4) (id))
- ((s1k4 s2k4) (s2k4 s1k4))))$
- set!*grouptable('k4,
- '((grouptable id s1k4 s2k4 rk4)
- (id id s1k4 s2k4 rk4)
- (s1k4 s1k4 id rk4 s2k4)
- (s2k4 s2k4 rk4 id s1k4)
- (rk4 rk4 s2k4 s1k4 id)))$
- set!*inverse('k4,'((id s1k4 s2k4 rk4) (id s1k4 s2k4 rk4)))$
- set!*elemasgen('k4,
- '(((s1k4) (s1k4)) ((s2k4) (s2k4)) ((rk4) (s1k4 s2k4))))$
- set!*group('k4,'((id) (s1k4) (s2k4) (rk4)))$
- set!*representation('k4,
- '((id (((1 . 1))))
- (s1k4 (((1 . 1))))
- (s2k4 (((1 . 1))))
- (rk4 (((1 . 1))))),'complex)$
- set!*representation('k4,
- '((id (((1 . 1))))
- (s1k4 (((-1 . 1))))
- (s2k4 (((1 . 1))))
- (rk4 (((-1 . 1))))),'complex)$
- set!*representation('k4,
- '((id (((1 . 1))))
- (s1k4 (((1 . 1))))
- (s2k4 (((-1 . 1))))
- (rk4 (((-1 . 1))))),'complex)$
- set!*representation('k4,
- '((id (((1 . 1))))
- (s1k4 (((-1 . 1))))
- (s2k4 (((-1 . 1))))
- (rk4 (((1 . 1))))),'complex)$
- set!*representation('k4,
- '(realtype
- (id (((1 . 1))))
- (s1k4 (((1 . 1))))
- (s2k4 (((1 . 1))))
- (rk4 (((1 . 1))))),'real)$
- set!*representation('k4,
- '(realtype
- (id (((1 . 1))))
- (s1k4 (((-1 . 1))))
- (s2k4 (((1 . 1))))
- (rk4 (((-1 . 1))))),'real)$
- set!*representation('k4,
- '(realtype
- (id (((1 . 1))))
- (s1k4 (((1 . 1))))
- (s2k4 (((-1 . 1))))
- (rk4 (((-1 . 1))))),'real)$
- set!*representation('k4,
- '(realtype
- (id (((1 . 1))))
- (s1k4 (((-1 . 1))))
- (s2k4 (((-1 . 1))))
- (rk4 (((1 . 1))))),'real)$
- set!*available 'k4$
- set!*elems!*group('d3,'(id rd3 rot2d3 sd3 srd3 sr2d3))$
- set!*generators('d3,'(rd3 sd3))$
- set!*relations('d3,
- '(((sd3 sd3) (id))
- ((rd3 rd3 rd3) (id))
- ((sd3 rd3 sd3) (rd3 rd3))))$
- set!*grouptable('d3,
- '((grouptable id rd3 rot2d3 sd3 srd3 sr2d3)
- (id id rd3 rot2d3 sd3 srd3 sr2d3)
- (rd3 rd3 rot2d3 id sr2d3 sd3 srd3)
- (rot2d3 rot2d3 id rd3 srd3 sr2d3 sd3)
- (sd3 sd3 srd3 sr2d3 id rd3 rot2d3)
- (srd3 srd3 sr2d3 sd3 rot2d3 id rd3)
- (sr2d3 sr2d3 sd3 srd3 rd3 rot2d3 id)))$
- set!*inverse('d3,
- '((id rd3 rot2d3 sd3 srd3 sr2d3) (id rot2d3 rd3 sd3 srd3 sr2d3)))$
- set!*elemasgen('d3,
- '(((rd3) (rd3))
- ((rot2d3) (rd3 rd3))
- ((sd3) (sd3))
- ((srd3) (sd3 rd3))
- ((sr2d3) (sd3 rd3 rd3))))$
- set!*group('d3,'((id) (rd3 rot2d3) (sr2d3 sd3 srd3)))$
- set!*representation('d3,
- '((id (((1 . 1))))
- (rd3 (((1 . 1))))
- (rot2d3 (((1 . 1))))
- (sd3 (((1 . 1))))
- (srd3 (((1 . 1))))
- (sr2d3 (((1 . 1))))),'complex)$
- set!*representation('d3,
- '((id (((1 . 1))))
- (rd3 (((1 . 1))))
- (rot2d3 (((1 . 1))))
- (sd3 (((-1 . 1))))
- (srd3 (((-1 . 1))))
- (sr2d3 (((-1 . 1))))),'complex)$
- set!*representation('d3,
- '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (rot2d3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr2d3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (1 . 2))))),'complex)$
- set!*representation('d3,
- '(realtype
- (id (((1 . 1))))
- (rd3 (((1 . 1))))
- (rot2d3 (((1 . 1))))
- (sd3 (((1 . 1))))
- (srd3 (((1 . 1))))
- (sr2d3 (((1 . 1))))),'real)$
- set!*representation('d3,
- '(realtype
- (id (((1 . 1))))
- (rd3 (((1 . 1))))
- (rot2d3 (((1 . 1))))
- (sd3 (((-1 . 1))))
- (srd3 (((-1 . 1))))
- (sr2d3 (((-1 . 1))))),'real)$
- set!*representation('d3,
- '(realtype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (rot2d3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr2d3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (1 . 2))))),'real)$
- set!*available 'd3$
- set!*elems!*group('d4,'(id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4))$
- set!*generators('d4,'(rd4 sd4))$
- set!*relations('d4,
- '(((sd4 sd4) (id))
- ((rd4 rd4 rd4 rd4) (id))
- ((sd4 rd4 sd4) (rd4 rd4 rd4))))$
- set!*grouptable('d4,
- '((grouptable id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
- (id id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
- (rd4 rd4 rot2d4 rot3d4 id sr3d4 sd4 srd4 sr2d4)
- (rot2d4 rot2d4 rot3d4 id rd4 sr2d4 sr3d4 sd4 srd4)
- (rot3d4 rot3d4 id rd4 rot2d4 srd4 sr2d4 sr3d4 sd4)
- (sd4 sd4 srd4 sr2d4 sr3d4 id rd4 rot2d4 rot3d4)
- (srd4 srd4 sr2d4 sr3d4 sd4 rot3d4 id rd4 rot2d4)
- (sr2d4 sr2d4 sr3d4 sd4 srd4 rot2d4 rot3d4 id rd4)
- (sr3d4 sr3d4 sd4 srd4 sr2d4 rd4 rot2d4 rot3d4 id)))$
- set!*inverse('d4,
- '((id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
- (id rot3d4 rot2d4 rd4 sd4 srd4 sr2d4 sr3d4)))$
- set!*elemasgen('d4,
- '(((rd4) (rd4))
- ((rot2d4) (rd4 rd4))
- ((rot3d4) (rd4 rd4 rd4))
- ((sd4) (sd4))
- ((srd4) (sd4 rd4))
- ((sr2d4) (sd4 rd4 rd4))
- ((sr3d4) (sd4 rd4 rd4 rd4))))$
- set!*group('d4,'((id) (rd4 rot3d4) (rot2d4) (sd4 sr2d4) (sr3d4 srd4)))$
- set!*representation('d4,
- '((id (((1 . 1))))
- (rd4 (((1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((1 . 1))))
- (sd4 (((1 . 1))))
- (srd4 (((1 . 1))))
- (sr2d4 (((1 . 1))))
- (sr3d4 (((1 . 1))))),'complex)$
- set!*representation('d4,
- '((id (((1 . 1))))
- (rd4 (((1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((1 . 1))))
- (sd4 (((-1 . 1))))
- (srd4 (((-1 . 1))))
- (sr2d4 (((-1 . 1))))
- (sr3d4 (((-1 . 1))))),'complex)$
- set!*representation('d4,
- '((id (((1 . 1))))
- (rd4 (((-1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((-1 . 1))))
- (sd4 (((1 . 1))))
- (srd4 (((-1 . 1))))
- (sr2d4 (((1 . 1))))
- (sr3d4 (((-1 . 1))))),'complex)$
- set!*representation('d4,
- '((id (((1 . 1))))
- (rd4 (((-1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((-1 . 1))))
- (sd4 (((-1 . 1))))
- (srd4 (((1 . 1))))
- (sr2d4 (((-1 . 1))))
- (sr3d4 (((1 . 1))))),'complex)$
- set!*representation('d4,
- '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))
- (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
- (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1))))
- (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))),
- 'complex)$
- set!*representation('d4,
- '(realtype
- (id (((1 . 1))))
- (rd4 (((1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((1 . 1))))
- (sd4 (((1 . 1))))
- (srd4 (((1 . 1))))
- (sr2d4 (((1 . 1))))
- (sr3d4 (((1 . 1))))),'real)$
- set!*representation('d4,
- '(realtype
- (id (((1 . 1))))
- (rd4 (((1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((1 . 1))))
- (sd4 (((-1 . 1))))
- (srd4 (((-1 . 1))))
- (sr2d4 (((-1 . 1))))
- (sr3d4 (((-1 . 1))))),'real)$
- set!*representation('d4,
- '(realtype
- (id (((1 . 1))))
- (rd4 (((-1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((-1 . 1))))
- (sd4 (((1 . 1))))
- (srd4 (((-1 . 1))))
- (sr2d4 (((1 . 1))))
- (sr3d4 (((-1 . 1))))),'real)$
- set!*representation('d4,
- '(realtype
- (id (((1 . 1))))
- (rd4 (((-1 . 1))))
- (rot2d4 (((1 . 1))))
- (rot3d4 (((-1 . 1))))
- (sd4 (((-1 . 1))))
- (srd4 (((1 . 1))))
- (sr2d4 (((-1 . 1))))
- (sr3d4 (((1 . 1))))),'real)$
- set!*representation('d4,
- '(realtype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))
- (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
- (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1))))
- (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))),
- 'real)$
- set!*available 'd4$
- set!*elems!*group('d5,
- '(id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5))$
- set!*generators('d5,'(rd5 sd5))$
- set!*relations('d5,
- '(((sd5 sd5) (id))
- ((rd5 rd5 rd5 rd5 rd5) (id))
- ((sd5 rd5 sd5) (rd5 rd5 rd5 rd5))))$
- set!*grouptable('d5,
- '((grouptable id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
- (id id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
- (rd5 rd5 r2d5 r3d5 r4d5 id sr4d5 sd5 srd5 sr2d5 sr3d5)
- (r2d5 r2d5 r3d5 r4d5 id rd5 sr3d5 sr4d5 sd5 srd5 sr2d5)
- (r3d5 r3d5 r4d5 id rd5 r2d5 sr2d5 sr3d5 sr4d5 sd5 srd5)
- (r4d5 r4d5 id rd5 r2d5 r3d5 srd5 sr2d5 sr3d5 sr4d5 sd5)
- (sd5 sd5 srd5 sr2d5 sr3d5 sr4d5 id rd5 r2d5 r3d5 r4d5)
- (srd5 srd5 sr2d5 sr3d5 sr4d5 sd5 r4d5 id rd5 r2d5 r3d5)
- (sr2d5 sr2d5 sr3d5 sr4d5 sd5 srd5 r3d5 r4d5 id rd5 r2d5)
- (sr3d5 sr3d5 sr4d5 sd5 srd5 sr2d5 r2d5 r3d5 r4d5 id rd5)
- (sr4d5 sr4d5 sd5 srd5 sr2d5 sr3d5 rd5 r2d5 r3d5 r4d5 id)))$
- set!*inverse('d5,
- '((id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
- (id r4d5 r3d5 r2d5 rd5 sd5 srd5 sr2d5 sr3d5 sr4d5)))$
- set!*elemasgen('d5,
- '(((rd5) (rd5))
- ((r2d5) (rd5 rd5))
- ((r3d5) (rd5 rd5 rd5))
- ((r4d5) (rd5 rd5 rd5 rd5))
- ((sd5) (sd5))
- ((srd5) (sd5 rd5))
- ((sr2d5) (sd5 rd5 rd5))
- ((sr3d5) (sd5 rd5 rd5 rd5))
- ((sr4d5) (sd5 rd5 rd5 rd5 rd5))))$
- set!*group('d5,
- '((id) (rd5 r4d5) (r2d5 r3d5) (srd5 sr2d5 sd5 sr4d5 sr3d5)))$
- set!*representation('d5,
- '((id (((1 . 1))))
- (rd5 (((1 . 1))))
- (r2d5 (((1 . 1))))
- (r3d5 (((1 . 1))))
- (r4d5 (((1 . 1))))
- (sd5 (((1 . 1))))
- (srd5 (((1 . 1))))
- (sr2d5 (((1 . 1))))
- (sr3d5 (((1 . 1))))
- (sr4d5 (((1 . 1))))),'complex)$
- set!*representation('d5,
- '((id (((1 . 1))))
- (rd5 (((1 . 1))))
- (r2d5 (((1 . 1))))
- (r3d5 (((1 . 1))))
- (r4d5 (((1 . 1))))
- (sd5 (((-1 . 1))))
- (srd5 (((-1 . 1))))
- (sr2d5 (((-1 . 1))))
- (sr3d5 (((-1 . 1))))
- (sr4d5 (((-1 . 1))))),'complex)$
- set!*representation('d5,
- '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd5
- (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
- (r2d5
- (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . 2)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1))))
- (r3d5
- (((((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 3)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1))))
- (r4d5
- (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . 4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . -4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . 4)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1))))
- (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd5
- (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)
- (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1))))
- (sr2d5
- (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -1))
- . 1))))
- (sr3d5
- (((((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3) . 1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . 3))
- (((cos (quotient (times 2 pi) 5)) . 3) . -1))
- . 1))))
- (sr4d5
- (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . 4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . 4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 4) . -1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . 6))
- (((cos (quotient (times 2 pi) 5)) . 4) . -1))
- . 1))))),'complex)$
- set!*representation('d5,
- '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd5
- (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
- (r2d5
- (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . 2)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1))))
- (r3d5
- (((((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 3)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1))))
- (r4d5
- (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . 4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . -4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . 4)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1))))
- (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd5
- (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)
- (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1))))
- (sr2d5
- (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -1))
- . 1))))
- (sr3d5
- (((((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3) . 1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . 3))
- (((cos (quotient (times 4 pi) 5)) . 3) . -1))
- . 1))))
- (sr4d5
- (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . 4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . 4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 4) . -1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . 6))
- (((cos (quotient (times 4 pi) 5)) . 4) . -1))
- . 1))))),'complex)$
- set!*representation('d5,
- '(realtype
- (id (((1 . 1))))
- (rd5 (((1 . 1))))
- (r2d5 (((1 . 1))))
- (r3d5 (((1 . 1))))
- (r4d5 (((1 . 1))))
- (sd5 (((1 . 1))))
- (srd5 (((1 . 1))))
- (sr2d5 (((1 . 1))))
- (sr3d5 (((1 . 1))))
- (sr4d5 (((1 . 1))))),'real)$
- set!*representation('d5,
- '(realtype
- (id (((1 . 1))))
- (rd5 (((1 . 1))))
- (r2d5 (((1 . 1))))
- (r3d5 (((1 . 1))))
- (r4d5 (((1 . 1))))
- (sd5 (((-1 . 1))))
- (srd5 (((-1 . 1))))
- (sr2d5 (((-1 . 1))))
- (sr3d5 (((-1 . 1))))
- (sr4d5 (((-1 . 1))))),'real)$
- set!*representation('d5,
- '(realtype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd5
- (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
- (r2d5
- (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . 2)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1))))
- (r3d5
- (((((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 3)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1))))
- (r4d5
- (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . 4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . -4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . 4)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1))))
- (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd5
- (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)
- (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1))))
- (sr2d5
- (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -1))
- . 1))))
- (sr3d5
- (((((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3) . 1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . 3))
- (((cos (quotient (times 2 pi) 5)) . 3) . -1))
- . 1))))
- (sr4d5
- (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . 4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . 4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 4) . -1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . 6))
- (((cos (quotient (times 2 pi) 5)) . 4) . -1))
- . 1))))),'real)$
- set!*representation('d5,
- '(realtype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd5
- (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
- (r2d5
- (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . 2)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1))))
- (r3d5
- (((((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 3)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1))))
- (r4d5
- (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . 4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . -4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . 4)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1))))
- (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd5
- (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)
- (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1))))
- (sr2d5
- (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -1))
- . 1))))
- (sr3d5
- (((((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3) . 1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . 3))
- (((cos (quotient (times 4 pi) 5)) . 3) . -1))
- . 1))))
- (sr4d5
- (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . 4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . 4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 4) . -1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . 6))
- (((cos (quotient (times 4 pi) 5)) . 4) . -1))
- . 1))))),'real)$
- set!*available 'd5$
- set!*elems!*group('d6,
- '(id
- rd6
- r2d6
- r3d6
- r4d6
- r5d6
- sd6
- srd6
- sr2d6
- sr3d6
- sr4d6
- sr5d6))$
- set!*generators('d6,'(rd6 sd6))$
- set!*relations('d6,
- '(((sd6 sd6) (id))
- ((rd6 rd6 rd6 rd6 rd6 rd6) (id))
- ((sd6 rd6 sd6) (rd6 rd6 rd6 rd6 rd6))))$
- set!*grouptable('d6,
- '((grouptable
- id
- rd6
- r2d6
- r3d6
- r4d6
- r5d6
- sd6
- srd6
- sr2d6
- sr3d6
- sr4d6
- sr5d6)
- (id
- id
- rd6
- r2d6
- r3d6
- r4d6
- r5d6
- sd6
- srd6
- sr2d6
- sr3d6
- sr4d6
- sr5d6)
- (rd6
- rd6
- r2d6
- r3d6
- r4d6
- r5d6
- id
- sr5d6
- sd6
- srd6
- sr2d6
- sr3d6
- sr4d6)
- (r2d6
- r2d6
- r3d6
- r4d6
- r5d6
- id
- rd6
- sr4d6
- sr5d6
- sd6
- srd6
- sr2d6
- sr3d6)
- (r3d6
- r3d6
- r4d6
- r5d6
- id
- rd6
- r2d6
- sr3d6
- sr4d6
- sr5d6
- sd6
- srd6
- sr2d6)
- (r4d6
- r4d6
- r5d6
- id
- rd6
- r2d6
- r3d6
- sr2d6
- sr3d6
- sr4d6
- sr5d6
- sd6
- srd6)
- (r5d6
- r5d6
- id
- rd6
- r2d6
- r3d6
- r4d6
- srd6
- sr2d6
- sr3d6
- sr4d6
- sr5d6
- sd6)
- (sd6
- sd6
- srd6
- sr2d6
- sr3d6
- sr4d6
- sr5d6
- id
- rd6
- r2d6
- r3d6
- r4d6
- r5d6)
- (srd6
- srd6
- sr2d6
- sr3d6
- sr4d6
- sr5d6
- sd6
- r5d6
- id
- rd6
- r2d6
- r3d6
- r4d6)
- (sr2d6
- sr2d6
- sr3d6
- sr4d6
- sr5d6
- sd6
- srd6
- r4d6
- r5d6
- id
- rd6
- r2d6
- r3d6)
- (sr3d6
- sr3d6
- sr4d6
- sr5d6
- sd6
- srd6
- sr2d6
- r3d6
- r4d6
- r5d6
- id
- rd6
- r2d6)
- (sr4d6
- sr4d6
- sr5d6
- sd6
- srd6
- sr2d6
- sr3d6
- r2d6
- r3d6
- r4d6
- r5d6
- id
- rd6)
- (sr5d6
- sr5d6
- sd6
- srd6
- sr2d6
- sr3d6
- sr4d6
- rd6
- r2d6
- r3d6
- r4d6
- r5d6
- id)))$
- set!*inverse('d6,
- '((id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)
- (id r5d6 r4d6 r3d6 r2d6 rd6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)))$
- set!*elemasgen('d6,
- '(((rd6) (rd6))
- ((r2d6) (rd6 rd6))
- ((r3d6) (rd6 rd6 rd6))
- ((r4d6) (rd6 rd6 rd6 rd6))
- ((r5d6) (rd6 rd6 rd6 rd6 rd6))
- ((sd6) (sd6))
- ((srd6) (sd6 rd6))
- ((sr2d6) (sd6 rd6 rd6))
- ((sr3d6) (sd6 rd6 rd6 rd6))
- ((sr4d6) (sd6 rd6 rd6 rd6 rd6))
- ((sr5d6) (sd6 rd6 rd6 rd6 rd6 rd6))))$
- set!*group('d6,
- '((id)
- (rd6 r5d6)
- (r2d6 r4d6)
- (r3d6)
- (sr2d6 sd6 sr4d6)
- (srd6 sr5d6 sr3d6)))$
- set!*representation('d6,
- '((id (((1 . 1))))
- (rd6 (((1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((1 . 1))))
- (sd6 (((1 . 1))))
- (srd6 (((1 . 1))))
- (sr2d6 (((1 . 1))))
- (sr3d6 (((1 . 1))))
- (sr4d6 (((1 . 1))))
- (sr5d6 (((1 . 1))))),'complex)$
- set!*representation('d6,
- '((id (((1 . 1))))
- (rd6 (((1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((1 . 1))))
- (sd6 (((-1 . 1))))
- (srd6 (((-1 . 1))))
- (sr2d6 (((-1 . 1))))
- (sr3d6 (((-1 . 1))))
- (sr4d6 (((-1 . 1))))
- (sr5d6 (((-1 . 1))))),'complex)$
- set!*representation('d6,
- '((id (((1 . 1))))
- (rd6 (((-1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((-1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((-1 . 1))))
- (sd6 (((1 . 1))))
- (srd6 (((-1 . 1))))
- (sr2d6 (((1 . 1))))
- (sr3d6 (((-1 . 1))))
- (sr4d6 (((1 . 1))))
- (sr5d6 (((-1 . 1))))),'complex)$
- set!*representation('d6,
- '((id (((1 . 1))))
- (rd6 (((-1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((-1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((-1 . 1))))
- (sd6 (((-1 . 1))))
- (srd6 (((1 . 1))))
- (sr2d6 (((-1 . 1))))
- (sr3d6 (((1 . 1))))
- (sr4d6 (((-1 . 1))))
- (sr5d6 (((1 . 1))))),'complex)$
- set!*representation('d6,
- '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
- (r2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (r4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (r5d6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (sr2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (sr4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
- (sr5d6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))),'complex)$
- set!*representation('d6,
- '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (r2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (r4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (r5d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
- (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (sr4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr5d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (1 . 2))))),'complex)$
- set!*representation('d6,
- '(realtype
- (id (((1 . 1))))
- (rd6 (((1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((1 . 1))))
- (sd6 (((1 . 1))))
- (srd6 (((1 . 1))))
- (sr2d6 (((1 . 1))))
- (sr3d6 (((1 . 1))))
- (sr4d6 (((1 . 1))))
- (sr5d6 (((1 . 1))))),'real)$
- set!*representation('d6,
- '(realtype
- (id (((1 . 1))))
- (rd6 (((1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((1 . 1))))
- (sd6 (((-1 . 1))))
- (srd6 (((-1 . 1))))
- (sr2d6 (((-1 . 1))))
- (sr3d6 (((-1 . 1))))
- (sr4d6 (((-1 . 1))))
- (sr5d6 (((-1 . 1))))),'real)$
- set!*representation('d6,
- '(realtype
- (id (((1 . 1))))
- (rd6 (((-1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((-1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((-1 . 1))))
- (sd6 (((1 . 1))))
- (srd6 (((-1 . 1))))
- (sr2d6 (((1 . 1))))
- (sr3d6 (((-1 . 1))))
- (sr4d6 (((1 . 1))))
- (sr5d6 (((-1 . 1))))),'real)$
- set!*representation('d6,
- '(realtype
- (id (((1 . 1))))
- (rd6 (((-1 . 1))))
- (r2d6 (((1 . 1))))
- (r3d6 (((-1 . 1))))
- (r4d6 (((1 . 1))))
- (r5d6 (((-1 . 1))))
- (sd6 (((-1 . 1))))
- (srd6 (((1 . 1))))
- (sr2d6 (((-1 . 1))))
- (sr3d6 (((1 . 1))))
- (sr4d6 (((-1 . 1))))
- (sr5d6 (((1 . 1))))),'real)$
- set!*representation('d6,
- '(realtype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
- (r2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (r4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (r5d6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (sr2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (sr4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
- (sr5d6
- (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))),'real)$
- set!*representation('d6,
- '(realtype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rd6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (r2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (r4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))
- (r5d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (srd6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr2d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
- (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (sr4d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
- (sr5d6
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (1 . 2))))),'real)$
- set!*available 'd6$
- set!*elems!*group('c3,'(id rc3 r2c3))$
- set!*generators('c3,'(rc3))$
- set!*relations('c3,'(((rc3 rc3 rc3) (id))))$
- set!*grouptable('c3,
- '((grouptable id rc3 r2c3)
- (id id rc3 r2c3)
- (rc3 rc3 r2c3 id)
- (r2c3 r2c3 id rc3)))$
- set!*inverse('c3,'((id rc3 r2c3) (id r2c3 rc3)))$
- set!*elemasgen('c3,'(((rc3) (rc3)) ((r2c3) (rc3 rc3))))$
- set!*group('c3,'((id) (rc3) (r2c3)))$
- set!*representation('c3,
- '((id (((1 . 1)))) (rc3 (((1 . 1)))) (r2c3 (((1 . 1))))),
- 'complex)$
- set!*representation('c3,
- '((id (((1 . 1))))
- (rc3
- (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1)
- . 2))))
- (r2c3
- (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1)
- . 2))))),'complex)$
- set!*representation('c3,
- '((id (((1 . 1))))
- (rc3
- (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1)
- . 2))))
- (r2c3
- (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1)
- . 2))))),'complex)$
- set!*representation('c3,
- '(realtype
- (id (((1 . 1))))
- (rc3 (((1 . 1))))
- (r2c3 (((1 . 1))))),'real)$
- set!*representation('c3,
- '(complextype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rc3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
- (r2c3
- (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
- ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
- (-1 . 2))))),'real)$
- set!*available 'c3$
- set!*elems!*group('c4,'(id rc4 r2c4 r3c4))$
- set!*generators('c4,'(rc4))$
- set!*relations('c4,'(((rc4 rc4 rc4 rc4) (id))))$
- set!*grouptable('c4,
- '((grouptable id rc4 r2c4 r3c4)
- (id id rc4 r2c4 r3c4)
- (rc4 rc4 r2c4 r3c4 id)
- (r2c4 r2c4 r3c4 id rc4)
- (r3c4 r3c4 id rc4 r2c4)))$
- set!*inverse('c4,'((id rc4 r2c4 r3c4) (id r3c4 r2c4 rc4)))$
- set!*elemasgen('c4,
- '(((rc4) (rc4)) ((r2c4) (rc4 rc4)) ((r3c4) (rc4 rc4 rc4))))$
- set!*group('c4,'((id) (rc4) (r2c4) (r3c4)))$
- set!*representation('c4,
- '((id (((1 . 1))))
- (rc4 (((1 . 1))))
- (r2c4 (((1 . 1))))
- (r3c4 (((1 . 1))))),'complex)$
- set!*representation('c4,
- '((id (((1 . 1))))
- (rc4 (((-1 . 1))))
- (r2c4 (((1 . 1))))
- (r3c4 (((-1 . 1))))),'complex)$
- set!*representation('c4,
- '((id (((1 . 1))))
- (rc4 ((((((i . 1) . 1)) . 1))))
- (r2c4 (((-1 . 1))))
- (r3c4 ((((((i . 1) . -1)) . 1))))),'complex)$
- set!*representation('c4,
- '((id (((1 . 1))))
- (rc4 ((((((i . 1) . -1)) . 1))))
- (r2c4 (((-1 . 1))))
- (r3c4 ((((((i . 1) . 1)) . 1))))),'complex)$
- set!*representation('c4,
- '(realtype
- (id (((1 . 1))))
- (rc4 (((1 . 1))))
- (r2c4 (((1 . 1))))
- (r3c4 (((1 . 1))))),'real)$
- set!*representation('c4,
- '(realtype
- (id (((1 . 1))))
- (rc4 (((-1 . 1))))
- (r2c4 (((1 . 1))))
- (r3c4 (((-1 . 1))))),'real)$
- set!*representation('c4,
- '(complextype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rc4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
- (r2c4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
- (r3c4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))),'real)$
- set!*available 'c4$
- set!*elems!*group('c5,'(id rc5 r2c5 r3c5 r4c5))$
- set!*generators('c5,'(rc5))$
- set!*relations('c5,'(((rc5 rc5 rc5 rc5 rc5) (id))))$
- set!*grouptable('c5,
- '((grouptable id rc5 r2c5 r3c5 r4c5)
- (id id rc5 r2c5 r3c5 r4c5)
- (rc5 rc5 r2c5 r3c5 r4c5 id)
- (r2c5 r2c5 r3c5 r4c5 id rc5)
- (r3c5 r3c5 r4c5 id rc5 r2c5)
- (r4c5 r4c5 id rc5 r2c5 r3c5)))$
- set!*inverse('c5,'((id rc5 r2c5 r3c5 r4c5) (id r4c5 r3c5 r2c5 rc5)))$
- set!*elemasgen('c5,
- '(((rc5) (rc5))
- ((r2c5) (rc5 rc5))
- ((r3c5) (rc5 rc5 rc5))
- ((r4c5) (rc5 rc5 rc5 rc5))))$
- set!*group('c5,'((id) (rc5) (r2c5) (r3c5) (r4c5)))$
- set!*representation('c5,
- '((id (((1 . 1))))
- (rc5 (((1 . 1))))
- (r2c5 (((1 . 1))))
- (r3c5 (((1 . 1))))
- (r4c5 (((1 . 1))))),'complex)$
- set!*representation('c5,
- '((id (((1 . 1))))
- (rc5
- (((((((sin (quotient (times 2 pi) 5)) . 1) ((i . 1) . 1))
- (((cos (quotient (times 2 pi) 5)) . 1) . 1))
- . 1))))
- (r2c5
- (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1)
- ((i . 1) . 2)))
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1))))
- (r3c5
- (((((((sin (quotient (times 2 pi) 5)) . 3)
- ((i . 1) . -1))
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2)
- ((i . 1) . 3)))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1))))
- (r4c5
- (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1)
- ((i . 1) . -4)))
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3)
- ((i . 1) . 4)))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1))))),'complex)$
- set!*representation('c5,
- '((id (((1 . 1))))
- (rc5
- (((((((sin (quotient (times 4 pi) 5)) . 1) ((i . 1) . 1))
- (((cos (quotient (times 4 pi) 5)) . 1) . 1))
- . 1))))
- (r2c5
- (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1)
- ((i . 1) . 2)))
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1))))
- (r3c5
- (((((((sin (quotient (times 4 pi) 5)) . 3)
- ((i . 1) . -1))
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2)
- ((i . 1) . 3)))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1))))
- (r4c5
- (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1)
- ((i . 1) . -4)))
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3)
- ((i . 1) . 4)))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1))))),'complex)$
- set!*representation('c5,
- '((id (((1 . 1))))
- (rc5
- (((((((sin (quotient (times 4 pi) 5)) . 1)
- ((i . 1) . -1))
- (((cos (quotient (times 4 pi) 5)) . 1) . 1))
- . 1))))
- (r2c5
- (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1)
- ((i . 1) . -2)))
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1))))
- (r3c5
- (((((((sin (quotient (times 4 pi) 5)) . 3) ((i . 1) . 1))
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2)
- ((i . 1) . -3)))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1))))
- (r4c5
- (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1)
- ((i . 1) . 4)))
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3)
- ((i . 1) . -4)))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1))))),'complex)$
- set!*representation('c5,
- '((id (((1 . 1))))
- (rc5
- (((((((sin (quotient (times 2 pi) 5)) . 1)
- ((i . 1) . -1))
- (((cos (quotient (times 2 pi) 5)) . 1) . 1))
- . 1))))
- (r2c5
- (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1)
- ((i . 1) . -2)))
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1))))
- (r3c5
- (((((((sin (quotient (times 2 pi) 5)) . 3) ((i . 1) . 1))
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2)
- ((i . 1) . -3)))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1))))
- (r4c5
- (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1)
- ((i . 1) . 4)))
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3)
- ((i . 1) . -4)))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1))))),'complex)$
- set!*representation('c5,
- '(realtype
- (id (((1 . 1))))
- (rc5 (((1 . 1))))
- (r2c5 (((1 . 1))))
- (r3c5 (((1 . 1))))
- (r4c5 (((1 . 1))))),'real)$
- set!*representation('c5,
- '(complextype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rc5
- (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
- (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
- (r2c5
- (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 1) . 2)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2) . -1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 1))
- . 1))))
- (r3c5
- (((((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 2) . 3)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 1) . -3))
- (((cos (quotient (times 2 pi) 5)) . 3) . 1))
- . 1))))
- (r4c5
- (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . 4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 2 pi) 5)) . 3)
- (((cos (quotient (times 2 pi) 5)) . 1) . -4))
- (((sin (quotient (times 2 pi) 5)) . 1)
- (((cos (quotient (times 2 pi) 5)) . 3) . 4)))
- . 1)
- (((((sin (quotient (times 2 pi) 5)) . 4) . 1)
- (((sin (quotient (times 2 pi) 5)) . 2)
- (((cos (quotient (times 2 pi) 5)) . 2) . -6))
- (((cos (quotient (times 2 pi) 5)) . 4) . 1))
- . 1))))),'real)$
- set!*representation('c5,
- '(complextype
- (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
- (rc5
- (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
- (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
- (r2c5
- (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 1) . 2)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2) . -1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 1))
- . 1))))
- (r3c5
- (((((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 2) . 3)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 1) . -3))
- (((cos (quotient (times 4 pi) 5)) . 3) . 1))
- . 1))))
- (r4c5
- (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . 4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
- . 1))
- ((((((sin (quotient (times 4 pi) 5)) . 3)
- (((cos (quotient (times 4 pi) 5)) . 1) . -4))
- (((sin (quotient (times 4 pi) 5)) . 1)
- (((cos (quotient (times 4 pi) 5)) . 3) . 4)))
- . 1)
- (((((sin (quotient (times 4 pi) 5)) . 4) . 1)
- (((sin (quotient (times 4 pi) 5)) . 2)
- (((cos (quotient (times 4 pi) 5)) . 2) . -6))
- (((cos (quotient (times 4 pi) 5)) . 4) . 1))
- . 1))))),'real)$
- set!*available 'c5$
- endmodule;
- end;
|