symdata1.red 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685
  1. module symdata1; % Data for symmetry package, part 1.
  2. % Author: Karin Gatermann <Gatermann@sc.ZIB-Berlin.de>.
  3. set!*elems!*group('z2,'(id sz2))$
  4. set!*generators('z2,'(sz2))$
  5. set!*relations('z2,'(((sz2 sz2) (id))))$
  6. set!*grouptable('z2,'((grouptable id sz2) (id id sz2) (sz2 sz2 id)))$
  7. set!*inverse('z2,'((id sz2) (id sz2)))$
  8. set!*elemasgen('z2,'(((sz2) (sz2))))$
  9. set!*group('z2,'((id) (sz2)))$
  10. set!*representation('z2,'((id (((1 . 1)))) (sz2 (((1 . 1))))),'complex)$
  11. set!*representation('z2,
  12. '((id (((1 . 1)))) (sz2 (((-1 . 1))))),'complex)$
  13. set!*representation('z2,
  14. '(realtype (id (((1 . 1)))) (sz2 (((1 . 1))))),'real)$
  15. set!*representation('z2,
  16. '(realtype (id (((1 . 1)))) (sz2 (((-1 . 1))))),'real)$
  17. set!*available 'z2$
  18. set!*elems!*group('k4,'(id s1k4 s2k4 rk4))$
  19. set!*generators('k4,'(s1k4 s2k4))$
  20. set!*relations('k4,
  21. '(((s1k4 s1k4) (id))
  22. ((s2k4 s2k4) (id))
  23. ((s1k4 s2k4) (s2k4 s1k4))))$
  24. set!*grouptable('k4,
  25. '((grouptable id s1k4 s2k4 rk4)
  26. (id id s1k4 s2k4 rk4)
  27. (s1k4 s1k4 id rk4 s2k4)
  28. (s2k4 s2k4 rk4 id s1k4)
  29. (rk4 rk4 s2k4 s1k4 id)))$
  30. set!*inverse('k4,'((id s1k4 s2k4 rk4) (id s1k4 s2k4 rk4)))$
  31. set!*elemasgen('k4,
  32. '(((s1k4) (s1k4)) ((s2k4) (s2k4)) ((rk4) (s1k4 s2k4))))$
  33. set!*group('k4,'((id) (s1k4) (s2k4) (rk4)))$
  34. set!*representation('k4,
  35. '((id (((1 . 1))))
  36. (s1k4 (((1 . 1))))
  37. (s2k4 (((1 . 1))))
  38. (rk4 (((1 . 1))))),'complex)$
  39. set!*representation('k4,
  40. '((id (((1 . 1))))
  41. (s1k4 (((-1 . 1))))
  42. (s2k4 (((1 . 1))))
  43. (rk4 (((-1 . 1))))),'complex)$
  44. set!*representation('k4,
  45. '((id (((1 . 1))))
  46. (s1k4 (((1 . 1))))
  47. (s2k4 (((-1 . 1))))
  48. (rk4 (((-1 . 1))))),'complex)$
  49. set!*representation('k4,
  50. '((id (((1 . 1))))
  51. (s1k4 (((-1 . 1))))
  52. (s2k4 (((-1 . 1))))
  53. (rk4 (((1 . 1))))),'complex)$
  54. set!*representation('k4,
  55. '(realtype
  56. (id (((1 . 1))))
  57. (s1k4 (((1 . 1))))
  58. (s2k4 (((1 . 1))))
  59. (rk4 (((1 . 1))))),'real)$
  60. set!*representation('k4,
  61. '(realtype
  62. (id (((1 . 1))))
  63. (s1k4 (((-1 . 1))))
  64. (s2k4 (((1 . 1))))
  65. (rk4 (((-1 . 1))))),'real)$
  66. set!*representation('k4,
  67. '(realtype
  68. (id (((1 . 1))))
  69. (s1k4 (((1 . 1))))
  70. (s2k4 (((-1 . 1))))
  71. (rk4 (((-1 . 1))))),'real)$
  72. set!*representation('k4,
  73. '(realtype
  74. (id (((1 . 1))))
  75. (s1k4 (((-1 . 1))))
  76. (s2k4 (((-1 . 1))))
  77. (rk4 (((1 . 1))))),'real)$
  78. set!*available 'k4$
  79. set!*elems!*group('d3,'(id rd3 rot2d3 sd3 srd3 sr2d3))$
  80. set!*generators('d3,'(rd3 sd3))$
  81. set!*relations('d3,
  82. '(((sd3 sd3) (id))
  83. ((rd3 rd3 rd3) (id))
  84. ((sd3 rd3 sd3) (rd3 rd3))))$
  85. set!*grouptable('d3,
  86. '((grouptable id rd3 rot2d3 sd3 srd3 sr2d3)
  87. (id id rd3 rot2d3 sd3 srd3 sr2d3)
  88. (rd3 rd3 rot2d3 id sr2d3 sd3 srd3)
  89. (rot2d3 rot2d3 id rd3 srd3 sr2d3 sd3)
  90. (sd3 sd3 srd3 sr2d3 id rd3 rot2d3)
  91. (srd3 srd3 sr2d3 sd3 rot2d3 id rd3)
  92. (sr2d3 sr2d3 sd3 srd3 rd3 rot2d3 id)))$
  93. set!*inverse('d3,
  94. '((id rd3 rot2d3 sd3 srd3 sr2d3) (id rot2d3 rd3 sd3 srd3 sr2d3)))$
  95. set!*elemasgen('d3,
  96. '(((rd3) (rd3))
  97. ((rot2d3) (rd3 rd3))
  98. ((sd3) (sd3))
  99. ((srd3) (sd3 rd3))
  100. ((sr2d3) (sd3 rd3 rd3))))$
  101. set!*group('d3,'((id) (rd3 rot2d3) (sr2d3 sd3 srd3)))$
  102. set!*representation('d3,
  103. '((id (((1 . 1))))
  104. (rd3 (((1 . 1))))
  105. (rot2d3 (((1 . 1))))
  106. (sd3 (((1 . 1))))
  107. (srd3 (((1 . 1))))
  108. (sr2d3 (((1 . 1))))),'complex)$
  109. set!*representation('d3,
  110. '((id (((1 . 1))))
  111. (rd3 (((1 . 1))))
  112. (rot2d3 (((1 . 1))))
  113. (sd3 (((-1 . 1))))
  114. (srd3 (((-1 . 1))))
  115. (sr2d3 (((-1 . 1))))),'complex)$
  116. set!*representation('d3,
  117. '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  118. (rd3
  119. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  120. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  121. (-1 . 2))))
  122. (rot2d3
  123. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  124. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  125. (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  126. (srd3
  127. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  128. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  129. (sr2d3
  130. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  131. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  132. (1 . 2))))),'complex)$
  133. set!*representation('d3,
  134. '(realtype
  135. (id (((1 . 1))))
  136. (rd3 (((1 . 1))))
  137. (rot2d3 (((1 . 1))))
  138. (sd3 (((1 . 1))))
  139. (srd3 (((1 . 1))))
  140. (sr2d3 (((1 . 1))))),'real)$
  141. set!*representation('d3,
  142. '(realtype
  143. (id (((1 . 1))))
  144. (rd3 (((1 . 1))))
  145. (rot2d3 (((1 . 1))))
  146. (sd3 (((-1 . 1))))
  147. (srd3 (((-1 . 1))))
  148. (sr2d3 (((-1 . 1))))),'real)$
  149. set!*representation('d3,
  150. '(realtype
  151. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  152. (rd3
  153. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  154. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  155. (-1 . 2))))
  156. (rot2d3
  157. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  158. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  159. (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  160. (srd3
  161. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  162. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  163. (sr2d3
  164. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  165. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  166. (1 . 2))))),'real)$
  167. set!*available 'd3$
  168. set!*elems!*group('d4,'(id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4))$
  169. set!*generators('d4,'(rd4 sd4))$
  170. set!*relations('d4,
  171. '(((sd4 sd4) (id))
  172. ((rd4 rd4 rd4 rd4) (id))
  173. ((sd4 rd4 sd4) (rd4 rd4 rd4))))$
  174. set!*grouptable('d4,
  175. '((grouptable id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
  176. (id id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
  177. (rd4 rd4 rot2d4 rot3d4 id sr3d4 sd4 srd4 sr2d4)
  178. (rot2d4 rot2d4 rot3d4 id rd4 sr2d4 sr3d4 sd4 srd4)
  179. (rot3d4 rot3d4 id rd4 rot2d4 srd4 sr2d4 sr3d4 sd4)
  180. (sd4 sd4 srd4 sr2d4 sr3d4 id rd4 rot2d4 rot3d4)
  181. (srd4 srd4 sr2d4 sr3d4 sd4 rot3d4 id rd4 rot2d4)
  182. (sr2d4 sr2d4 sr3d4 sd4 srd4 rot2d4 rot3d4 id rd4)
  183. (sr3d4 sr3d4 sd4 srd4 sr2d4 rd4 rot2d4 rot3d4 id)))$
  184. set!*inverse('d4,
  185. '((id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
  186. (id rot3d4 rot2d4 rd4 sd4 srd4 sr2d4 sr3d4)))$
  187. set!*elemasgen('d4,
  188. '(((rd4) (rd4))
  189. ((rot2d4) (rd4 rd4))
  190. ((rot3d4) (rd4 rd4 rd4))
  191. ((sd4) (sd4))
  192. ((srd4) (sd4 rd4))
  193. ((sr2d4) (sd4 rd4 rd4))
  194. ((sr3d4) (sd4 rd4 rd4 rd4))))$
  195. set!*group('d4,'((id) (rd4 rot3d4) (rot2d4) (sd4 sr2d4) (sr3d4 srd4)))$
  196. set!*representation('d4,
  197. '((id (((1 . 1))))
  198. (rd4 (((1 . 1))))
  199. (rot2d4 (((1 . 1))))
  200. (rot3d4 (((1 . 1))))
  201. (sd4 (((1 . 1))))
  202. (srd4 (((1 . 1))))
  203. (sr2d4 (((1 . 1))))
  204. (sr3d4 (((1 . 1))))),'complex)$
  205. set!*representation('d4,
  206. '((id (((1 . 1))))
  207. (rd4 (((1 . 1))))
  208. (rot2d4 (((1 . 1))))
  209. (rot3d4 (((1 . 1))))
  210. (sd4 (((-1 . 1))))
  211. (srd4 (((-1 . 1))))
  212. (sr2d4 (((-1 . 1))))
  213. (sr3d4 (((-1 . 1))))),'complex)$
  214. set!*representation('d4,
  215. '((id (((1 . 1))))
  216. (rd4 (((-1 . 1))))
  217. (rot2d4 (((1 . 1))))
  218. (rot3d4 (((-1 . 1))))
  219. (sd4 (((1 . 1))))
  220. (srd4 (((-1 . 1))))
  221. (sr2d4 (((1 . 1))))
  222. (sr3d4 (((-1 . 1))))),'complex)$
  223. set!*representation('d4,
  224. '((id (((1 . 1))))
  225. (rd4 (((-1 . 1))))
  226. (rot2d4 (((1 . 1))))
  227. (rot3d4 (((-1 . 1))))
  228. (sd4 (((-1 . 1))))
  229. (srd4 (((1 . 1))))
  230. (sr2d4 (((-1 . 1))))
  231. (sr3d4 (((1 . 1))))),'complex)$
  232. set!*representation('d4,
  233. '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  234. (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))
  235. (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  236. (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
  237. (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  238. (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1))))
  239. (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  240. (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))),
  241. 'complex)$
  242. set!*representation('d4,
  243. '(realtype
  244. (id (((1 . 1))))
  245. (rd4 (((1 . 1))))
  246. (rot2d4 (((1 . 1))))
  247. (rot3d4 (((1 . 1))))
  248. (sd4 (((1 . 1))))
  249. (srd4 (((1 . 1))))
  250. (sr2d4 (((1 . 1))))
  251. (sr3d4 (((1 . 1))))),'real)$
  252. set!*representation('d4,
  253. '(realtype
  254. (id (((1 . 1))))
  255. (rd4 (((1 . 1))))
  256. (rot2d4 (((1 . 1))))
  257. (rot3d4 (((1 . 1))))
  258. (sd4 (((-1 . 1))))
  259. (srd4 (((-1 . 1))))
  260. (sr2d4 (((-1 . 1))))
  261. (sr3d4 (((-1 . 1))))),'real)$
  262. set!*representation('d4,
  263. '(realtype
  264. (id (((1 . 1))))
  265. (rd4 (((-1 . 1))))
  266. (rot2d4 (((1 . 1))))
  267. (rot3d4 (((-1 . 1))))
  268. (sd4 (((1 . 1))))
  269. (srd4 (((-1 . 1))))
  270. (sr2d4 (((1 . 1))))
  271. (sr3d4 (((-1 . 1))))),'real)$
  272. set!*representation('d4,
  273. '(realtype
  274. (id (((1 . 1))))
  275. (rd4 (((-1 . 1))))
  276. (rot2d4 (((1 . 1))))
  277. (rot3d4 (((-1 . 1))))
  278. (sd4 (((-1 . 1))))
  279. (srd4 (((1 . 1))))
  280. (sr2d4 (((-1 . 1))))
  281. (sr3d4 (((1 . 1))))),'real)$
  282. set!*representation('d4,
  283. '(realtype
  284. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  285. (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))
  286. (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  287. (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
  288. (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  289. (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1))))
  290. (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  291. (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))),
  292. 'real)$
  293. set!*available 'd4$
  294. set!*elems!*group('d5,
  295. '(id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5))$
  296. set!*generators('d5,'(rd5 sd5))$
  297. set!*relations('d5,
  298. '(((sd5 sd5) (id))
  299. ((rd5 rd5 rd5 rd5 rd5) (id))
  300. ((sd5 rd5 sd5) (rd5 rd5 rd5 rd5))))$
  301. set!*grouptable('d5,
  302. '((grouptable id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
  303. (id id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
  304. (rd5 rd5 r2d5 r3d5 r4d5 id sr4d5 sd5 srd5 sr2d5 sr3d5)
  305. (r2d5 r2d5 r3d5 r4d5 id rd5 sr3d5 sr4d5 sd5 srd5 sr2d5)
  306. (r3d5 r3d5 r4d5 id rd5 r2d5 sr2d5 sr3d5 sr4d5 sd5 srd5)
  307. (r4d5 r4d5 id rd5 r2d5 r3d5 srd5 sr2d5 sr3d5 sr4d5 sd5)
  308. (sd5 sd5 srd5 sr2d5 sr3d5 sr4d5 id rd5 r2d5 r3d5 r4d5)
  309. (srd5 srd5 sr2d5 sr3d5 sr4d5 sd5 r4d5 id rd5 r2d5 r3d5)
  310. (sr2d5 sr2d5 sr3d5 sr4d5 sd5 srd5 r3d5 r4d5 id rd5 r2d5)
  311. (sr3d5 sr3d5 sr4d5 sd5 srd5 sr2d5 r2d5 r3d5 r4d5 id rd5)
  312. (sr4d5 sr4d5 sd5 srd5 sr2d5 sr3d5 rd5 r2d5 r3d5 r4d5 id)))$
  313. set!*inverse('d5,
  314. '((id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
  315. (id r4d5 r3d5 r2d5 rd5 sd5 srd5 sr2d5 sr3d5 sr4d5)))$
  316. set!*elemasgen('d5,
  317. '(((rd5) (rd5))
  318. ((r2d5) (rd5 rd5))
  319. ((r3d5) (rd5 rd5 rd5))
  320. ((r4d5) (rd5 rd5 rd5 rd5))
  321. ((sd5) (sd5))
  322. ((srd5) (sd5 rd5))
  323. ((sr2d5) (sd5 rd5 rd5))
  324. ((sr3d5) (sd5 rd5 rd5 rd5))
  325. ((sr4d5) (sd5 rd5 rd5 rd5 rd5))))$
  326. set!*group('d5,
  327. '((id) (rd5 r4d5) (r2d5 r3d5) (srd5 sr2d5 sd5 sr4d5 sr3d5)))$
  328. set!*representation('d5,
  329. '((id (((1 . 1))))
  330. (rd5 (((1 . 1))))
  331. (r2d5 (((1 . 1))))
  332. (r3d5 (((1 . 1))))
  333. (r4d5 (((1 . 1))))
  334. (sd5 (((1 . 1))))
  335. (srd5 (((1 . 1))))
  336. (sr2d5 (((1 . 1))))
  337. (sr3d5 (((1 . 1))))
  338. (sr4d5 (((1 . 1))))),'complex)$
  339. set!*representation('d5,
  340. '((id (((1 . 1))))
  341. (rd5 (((1 . 1))))
  342. (r2d5 (((1 . 1))))
  343. (r3d5 (((1 . 1))))
  344. (r4d5 (((1 . 1))))
  345. (sd5 (((-1 . 1))))
  346. (srd5 (((-1 . 1))))
  347. (sr2d5 (((-1 . 1))))
  348. (sr3d5 (((-1 . 1))))
  349. (sr4d5 (((-1 . 1))))),'complex)$
  350. set!*representation('d5,
  351. '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  352. (rd5
  353. (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  354. (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
  355. ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  356. (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
  357. (r2d5
  358. (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  359. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  360. . 1)
  361. (((((sin (quotient (times 2 pi) 5)) . 1)
  362. (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
  363. . 1))
  364. ((((((sin (quotient (times 2 pi) 5)) . 1)
  365. (((cos (quotient (times 2 pi) 5)) . 1) . 2)))
  366. . 1)
  367. (((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  368. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  369. . 1))))
  370. (r3d5
  371. (((((((sin (quotient (times 2 pi) 5)) . 2)
  372. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  373. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  374. . 1)
  375. (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
  376. (((sin (quotient (times 2 pi) 5)) . 1)
  377. (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
  378. . 1))
  379. ((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
  380. (((sin (quotient (times 2 pi) 5)) . 1)
  381. (((cos (quotient (times 2 pi) 5)) . 2) . 3)))
  382. . 1)
  383. (((((sin (quotient (times 2 pi) 5)) . 2)
  384. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  385. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  386. . 1))))
  387. (r4d5
  388. (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  389. (((sin (quotient (times 2 pi) 5)) . 2)
  390. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  391. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  392. . 1)
  393. (((((sin (quotient (times 2 pi) 5)) . 3)
  394. (((cos (quotient (times 2 pi) 5)) . 1) . 4))
  395. (((sin (quotient (times 2 pi) 5)) . 1)
  396. (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
  397. . 1))
  398. ((((((sin (quotient (times 2 pi) 5)) . 3)
  399. (((cos (quotient (times 2 pi) 5)) . 1) . -4))
  400. (((sin (quotient (times 2 pi) 5)) . 1)
  401. (((cos (quotient (times 2 pi) 5)) . 3) . 4)))
  402. . 1)
  403. (((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  404. (((sin (quotient (times 2 pi) 5)) . 2)
  405. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  406. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  407. . 1))))
  408. (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  409. (srd5
  410. (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  411. (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
  412. ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)
  413. (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1))))
  414. (sr2d5
  415. (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  416. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  417. . 1)
  418. (((((sin (quotient (times 2 pi) 5)) . 1)
  419. (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
  420. . 1))
  421. ((((((sin (quotient (times 2 pi) 5)) . 1)
  422. (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
  423. . 1)
  424. (((((sin (quotient (times 2 pi) 5)) . 2) . 1)
  425. (((cos (quotient (times 2 pi) 5)) . 2) . -1))
  426. . 1))))
  427. (sr3d5
  428. (((((((sin (quotient (times 2 pi) 5)) . 2)
  429. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  430. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  431. . 1)
  432. (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
  433. (((sin (quotient (times 2 pi) 5)) . 1)
  434. (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
  435. . 1))
  436. ((((((sin (quotient (times 2 pi) 5)) . 3) . 1)
  437. (((sin (quotient (times 2 pi) 5)) . 1)
  438. (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
  439. . 1)
  440. (((((sin (quotient (times 2 pi) 5)) . 2)
  441. (((cos (quotient (times 2 pi) 5)) . 1) . 3))
  442. (((cos (quotient (times 2 pi) 5)) . 3) . -1))
  443. . 1))))
  444. (sr4d5
  445. (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  446. (((sin (quotient (times 2 pi) 5)) . 2)
  447. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  448. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  449. . 1)
  450. (((((sin (quotient (times 2 pi) 5)) . 3)
  451. (((cos (quotient (times 2 pi) 5)) . 1) . 4))
  452. (((sin (quotient (times 2 pi) 5)) . 1)
  453. (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
  454. . 1))
  455. ((((((sin (quotient (times 2 pi) 5)) . 3)
  456. (((cos (quotient (times 2 pi) 5)) . 1) . 4))
  457. (((sin (quotient (times 2 pi) 5)) . 1)
  458. (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
  459. . 1)
  460. (((((sin (quotient (times 2 pi) 5)) . 4) . -1)
  461. (((sin (quotient (times 2 pi) 5)) . 2)
  462. (((cos (quotient (times 2 pi) 5)) . 2) . 6))
  463. (((cos (quotient (times 2 pi) 5)) . 4) . -1))
  464. . 1))))),'complex)$
  465. set!*representation('d5,
  466. '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  467. (rd5
  468. (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  469. (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
  470. ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  471. (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
  472. (r2d5
  473. (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  474. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  475. . 1)
  476. (((((sin (quotient (times 4 pi) 5)) . 1)
  477. (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
  478. . 1))
  479. ((((((sin (quotient (times 4 pi) 5)) . 1)
  480. (((cos (quotient (times 4 pi) 5)) . 1) . 2)))
  481. . 1)
  482. (((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  483. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  484. . 1))))
  485. (r3d5
  486. (((((((sin (quotient (times 4 pi) 5)) . 2)
  487. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  488. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  489. . 1)
  490. (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
  491. (((sin (quotient (times 4 pi) 5)) . 1)
  492. (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
  493. . 1))
  494. ((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
  495. (((sin (quotient (times 4 pi) 5)) . 1)
  496. (((cos (quotient (times 4 pi) 5)) . 2) . 3)))
  497. . 1)
  498. (((((sin (quotient (times 4 pi) 5)) . 2)
  499. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  500. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  501. . 1))))
  502. (r4d5
  503. (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  504. (((sin (quotient (times 4 pi) 5)) . 2)
  505. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  506. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  507. . 1)
  508. (((((sin (quotient (times 4 pi) 5)) . 3)
  509. (((cos (quotient (times 4 pi) 5)) . 1) . 4))
  510. (((sin (quotient (times 4 pi) 5)) . 1)
  511. (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
  512. . 1))
  513. ((((((sin (quotient (times 4 pi) 5)) . 3)
  514. (((cos (quotient (times 4 pi) 5)) . 1) . -4))
  515. (((sin (quotient (times 4 pi) 5)) . 1)
  516. (((cos (quotient (times 4 pi) 5)) . 3) . 4)))
  517. . 1)
  518. (((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  519. (((sin (quotient (times 4 pi) 5)) . 2)
  520. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  521. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  522. . 1))))
  523. (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  524. (srd5
  525. (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  526. (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
  527. ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)
  528. (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1))))
  529. (sr2d5
  530. (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  531. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  532. . 1)
  533. (((((sin (quotient (times 4 pi) 5)) . 1)
  534. (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
  535. . 1))
  536. ((((((sin (quotient (times 4 pi) 5)) . 1)
  537. (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
  538. . 1)
  539. (((((sin (quotient (times 4 pi) 5)) . 2) . 1)
  540. (((cos (quotient (times 4 pi) 5)) . 2) . -1))
  541. . 1))))
  542. (sr3d5
  543. (((((((sin (quotient (times 4 pi) 5)) . 2)
  544. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  545. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  546. . 1)
  547. (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
  548. (((sin (quotient (times 4 pi) 5)) . 1)
  549. (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
  550. . 1))
  551. ((((((sin (quotient (times 4 pi) 5)) . 3) . 1)
  552. (((sin (quotient (times 4 pi) 5)) . 1)
  553. (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
  554. . 1)
  555. (((((sin (quotient (times 4 pi) 5)) . 2)
  556. (((cos (quotient (times 4 pi) 5)) . 1) . 3))
  557. (((cos (quotient (times 4 pi) 5)) . 3) . -1))
  558. . 1))))
  559. (sr4d5
  560. (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  561. (((sin (quotient (times 4 pi) 5)) . 2)
  562. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  563. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  564. . 1)
  565. (((((sin (quotient (times 4 pi) 5)) . 3)
  566. (((cos (quotient (times 4 pi) 5)) . 1) . 4))
  567. (((sin (quotient (times 4 pi) 5)) . 1)
  568. (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
  569. . 1))
  570. ((((((sin (quotient (times 4 pi) 5)) . 3)
  571. (((cos (quotient (times 4 pi) 5)) . 1) . 4))
  572. (((sin (quotient (times 4 pi) 5)) . 1)
  573. (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
  574. . 1)
  575. (((((sin (quotient (times 4 pi) 5)) . 4) . -1)
  576. (((sin (quotient (times 4 pi) 5)) . 2)
  577. (((cos (quotient (times 4 pi) 5)) . 2) . 6))
  578. (((cos (quotient (times 4 pi) 5)) . 4) . -1))
  579. . 1))))),'complex)$
  580. set!*representation('d5,
  581. '(realtype
  582. (id (((1 . 1))))
  583. (rd5 (((1 . 1))))
  584. (r2d5 (((1 . 1))))
  585. (r3d5 (((1 . 1))))
  586. (r4d5 (((1 . 1))))
  587. (sd5 (((1 . 1))))
  588. (srd5 (((1 . 1))))
  589. (sr2d5 (((1 . 1))))
  590. (sr3d5 (((1 . 1))))
  591. (sr4d5 (((1 . 1))))),'real)$
  592. set!*representation('d5,
  593. '(realtype
  594. (id (((1 . 1))))
  595. (rd5 (((1 . 1))))
  596. (r2d5 (((1 . 1))))
  597. (r3d5 (((1 . 1))))
  598. (r4d5 (((1 . 1))))
  599. (sd5 (((-1 . 1))))
  600. (srd5 (((-1 . 1))))
  601. (sr2d5 (((-1 . 1))))
  602. (sr3d5 (((-1 . 1))))
  603. (sr4d5 (((-1 . 1))))),'real)$
  604. set!*representation('d5,
  605. '(realtype
  606. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  607. (rd5
  608. (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  609. (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
  610. ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  611. (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
  612. (r2d5
  613. (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  614. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  615. . 1)
  616. (((((sin (quotient (times 2 pi) 5)) . 1)
  617. (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
  618. . 1))
  619. ((((((sin (quotient (times 2 pi) 5)) . 1)
  620. (((cos (quotient (times 2 pi) 5)) . 1) . 2)))
  621. . 1)
  622. (((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  623. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  624. . 1))))
  625. (r3d5
  626. (((((((sin (quotient (times 2 pi) 5)) . 2)
  627. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  628. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  629. . 1)
  630. (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
  631. (((sin (quotient (times 2 pi) 5)) . 1)
  632. (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
  633. . 1))
  634. ((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
  635. (((sin (quotient (times 2 pi) 5)) . 1)
  636. (((cos (quotient (times 2 pi) 5)) . 2) . 3)))
  637. . 1)
  638. (((((sin (quotient (times 2 pi) 5)) . 2)
  639. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  640. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  641. . 1))))
  642. (r4d5
  643. (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  644. (((sin (quotient (times 2 pi) 5)) . 2)
  645. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  646. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  647. . 1)
  648. (((((sin (quotient (times 2 pi) 5)) . 3)
  649. (((cos (quotient (times 2 pi) 5)) . 1) . 4))
  650. (((sin (quotient (times 2 pi) 5)) . 1)
  651. (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
  652. . 1))
  653. ((((((sin (quotient (times 2 pi) 5)) . 3)
  654. (((cos (quotient (times 2 pi) 5)) . 1) . -4))
  655. (((sin (quotient (times 2 pi) 5)) . 1)
  656. (((cos (quotient (times 2 pi) 5)) . 3) . 4)))
  657. . 1)
  658. (((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  659. (((sin (quotient (times 2 pi) 5)) . 2)
  660. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  661. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  662. . 1))))
  663. (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  664. (srd5
  665. (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  666. (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
  667. ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)
  668. (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1))))
  669. (sr2d5
  670. (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  671. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  672. . 1)
  673. (((((sin (quotient (times 2 pi) 5)) . 1)
  674. (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
  675. . 1))
  676. ((((((sin (quotient (times 2 pi) 5)) . 1)
  677. (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
  678. . 1)
  679. (((((sin (quotient (times 2 pi) 5)) . 2) . 1)
  680. (((cos (quotient (times 2 pi) 5)) . 2) . -1))
  681. . 1))))
  682. (sr3d5
  683. (((((((sin (quotient (times 2 pi) 5)) . 2)
  684. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  685. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  686. . 1)
  687. (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
  688. (((sin (quotient (times 2 pi) 5)) . 1)
  689. (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
  690. . 1))
  691. ((((((sin (quotient (times 2 pi) 5)) . 3) . 1)
  692. (((sin (quotient (times 2 pi) 5)) . 1)
  693. (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
  694. . 1)
  695. (((((sin (quotient (times 2 pi) 5)) . 2)
  696. (((cos (quotient (times 2 pi) 5)) . 1) . 3))
  697. (((cos (quotient (times 2 pi) 5)) . 3) . -1))
  698. . 1))))
  699. (sr4d5
  700. (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  701. (((sin (quotient (times 2 pi) 5)) . 2)
  702. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  703. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  704. . 1)
  705. (((((sin (quotient (times 2 pi) 5)) . 3)
  706. (((cos (quotient (times 2 pi) 5)) . 1) . 4))
  707. (((sin (quotient (times 2 pi) 5)) . 1)
  708. (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
  709. . 1))
  710. ((((((sin (quotient (times 2 pi) 5)) . 3)
  711. (((cos (quotient (times 2 pi) 5)) . 1) . 4))
  712. (((sin (quotient (times 2 pi) 5)) . 1)
  713. (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
  714. . 1)
  715. (((((sin (quotient (times 2 pi) 5)) . 4) . -1)
  716. (((sin (quotient (times 2 pi) 5)) . 2)
  717. (((cos (quotient (times 2 pi) 5)) . 2) . 6))
  718. (((cos (quotient (times 2 pi) 5)) . 4) . -1))
  719. . 1))))),'real)$
  720. set!*representation('d5,
  721. '(realtype
  722. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  723. (rd5
  724. (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  725. (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
  726. ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  727. (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
  728. (r2d5
  729. (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  730. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  731. . 1)
  732. (((((sin (quotient (times 4 pi) 5)) . 1)
  733. (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
  734. . 1))
  735. ((((((sin (quotient (times 4 pi) 5)) . 1)
  736. (((cos (quotient (times 4 pi) 5)) . 1) . 2)))
  737. . 1)
  738. (((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  739. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  740. . 1))))
  741. (r3d5
  742. (((((((sin (quotient (times 4 pi) 5)) . 2)
  743. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  744. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  745. . 1)
  746. (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
  747. (((sin (quotient (times 4 pi) 5)) . 1)
  748. (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
  749. . 1))
  750. ((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
  751. (((sin (quotient (times 4 pi) 5)) . 1)
  752. (((cos (quotient (times 4 pi) 5)) . 2) . 3)))
  753. . 1)
  754. (((((sin (quotient (times 4 pi) 5)) . 2)
  755. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  756. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  757. . 1))))
  758. (r4d5
  759. (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  760. (((sin (quotient (times 4 pi) 5)) . 2)
  761. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  762. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  763. . 1)
  764. (((((sin (quotient (times 4 pi) 5)) . 3)
  765. (((cos (quotient (times 4 pi) 5)) . 1) . 4))
  766. (((sin (quotient (times 4 pi) 5)) . 1)
  767. (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
  768. . 1))
  769. ((((((sin (quotient (times 4 pi) 5)) . 3)
  770. (((cos (quotient (times 4 pi) 5)) . 1) . -4))
  771. (((sin (quotient (times 4 pi) 5)) . 1)
  772. (((cos (quotient (times 4 pi) 5)) . 3) . 4)))
  773. . 1)
  774. (((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  775. (((sin (quotient (times 4 pi) 5)) . 2)
  776. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  777. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  778. . 1))))
  779. (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  780. (srd5
  781. (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  782. (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
  783. ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)
  784. (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1))))
  785. (sr2d5
  786. (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  787. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  788. . 1)
  789. (((((sin (quotient (times 4 pi) 5)) . 1)
  790. (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
  791. . 1))
  792. ((((((sin (quotient (times 4 pi) 5)) . 1)
  793. (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
  794. . 1)
  795. (((((sin (quotient (times 4 pi) 5)) . 2) . 1)
  796. (((cos (quotient (times 4 pi) 5)) . 2) . -1))
  797. . 1))))
  798. (sr3d5
  799. (((((((sin (quotient (times 4 pi) 5)) . 2)
  800. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  801. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  802. . 1)
  803. (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
  804. (((sin (quotient (times 4 pi) 5)) . 1)
  805. (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
  806. . 1))
  807. ((((((sin (quotient (times 4 pi) 5)) . 3) . 1)
  808. (((sin (quotient (times 4 pi) 5)) . 1)
  809. (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
  810. . 1)
  811. (((((sin (quotient (times 4 pi) 5)) . 2)
  812. (((cos (quotient (times 4 pi) 5)) . 1) . 3))
  813. (((cos (quotient (times 4 pi) 5)) . 3) . -1))
  814. . 1))))
  815. (sr4d5
  816. (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  817. (((sin (quotient (times 4 pi) 5)) . 2)
  818. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  819. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  820. . 1)
  821. (((((sin (quotient (times 4 pi) 5)) . 3)
  822. (((cos (quotient (times 4 pi) 5)) . 1) . 4))
  823. (((sin (quotient (times 4 pi) 5)) . 1)
  824. (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
  825. . 1))
  826. ((((((sin (quotient (times 4 pi) 5)) . 3)
  827. (((cos (quotient (times 4 pi) 5)) . 1) . 4))
  828. (((sin (quotient (times 4 pi) 5)) . 1)
  829. (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
  830. . 1)
  831. (((((sin (quotient (times 4 pi) 5)) . 4) . -1)
  832. (((sin (quotient (times 4 pi) 5)) . 2)
  833. (((cos (quotient (times 4 pi) 5)) . 2) . 6))
  834. (((cos (quotient (times 4 pi) 5)) . 4) . -1))
  835. . 1))))),'real)$
  836. set!*available 'd5$
  837. set!*elems!*group('d6,
  838. '(id
  839. rd6
  840. r2d6
  841. r3d6
  842. r4d6
  843. r5d6
  844. sd6
  845. srd6
  846. sr2d6
  847. sr3d6
  848. sr4d6
  849. sr5d6))$
  850. set!*generators('d6,'(rd6 sd6))$
  851. set!*relations('d6,
  852. '(((sd6 sd6) (id))
  853. ((rd6 rd6 rd6 rd6 rd6 rd6) (id))
  854. ((sd6 rd6 sd6) (rd6 rd6 rd6 rd6 rd6))))$
  855. set!*grouptable('d6,
  856. '((grouptable
  857. id
  858. rd6
  859. r2d6
  860. r3d6
  861. r4d6
  862. r5d6
  863. sd6
  864. srd6
  865. sr2d6
  866. sr3d6
  867. sr4d6
  868. sr5d6)
  869. (id
  870. id
  871. rd6
  872. r2d6
  873. r3d6
  874. r4d6
  875. r5d6
  876. sd6
  877. srd6
  878. sr2d6
  879. sr3d6
  880. sr4d6
  881. sr5d6)
  882. (rd6
  883. rd6
  884. r2d6
  885. r3d6
  886. r4d6
  887. r5d6
  888. id
  889. sr5d6
  890. sd6
  891. srd6
  892. sr2d6
  893. sr3d6
  894. sr4d6)
  895. (r2d6
  896. r2d6
  897. r3d6
  898. r4d6
  899. r5d6
  900. id
  901. rd6
  902. sr4d6
  903. sr5d6
  904. sd6
  905. srd6
  906. sr2d6
  907. sr3d6)
  908. (r3d6
  909. r3d6
  910. r4d6
  911. r5d6
  912. id
  913. rd6
  914. r2d6
  915. sr3d6
  916. sr4d6
  917. sr5d6
  918. sd6
  919. srd6
  920. sr2d6)
  921. (r4d6
  922. r4d6
  923. r5d6
  924. id
  925. rd6
  926. r2d6
  927. r3d6
  928. sr2d6
  929. sr3d6
  930. sr4d6
  931. sr5d6
  932. sd6
  933. srd6)
  934. (r5d6
  935. r5d6
  936. id
  937. rd6
  938. r2d6
  939. r3d6
  940. r4d6
  941. srd6
  942. sr2d6
  943. sr3d6
  944. sr4d6
  945. sr5d6
  946. sd6)
  947. (sd6
  948. sd6
  949. srd6
  950. sr2d6
  951. sr3d6
  952. sr4d6
  953. sr5d6
  954. id
  955. rd6
  956. r2d6
  957. r3d6
  958. r4d6
  959. r5d6)
  960. (srd6
  961. srd6
  962. sr2d6
  963. sr3d6
  964. sr4d6
  965. sr5d6
  966. sd6
  967. r5d6
  968. id
  969. rd6
  970. r2d6
  971. r3d6
  972. r4d6)
  973. (sr2d6
  974. sr2d6
  975. sr3d6
  976. sr4d6
  977. sr5d6
  978. sd6
  979. srd6
  980. r4d6
  981. r5d6
  982. id
  983. rd6
  984. r2d6
  985. r3d6)
  986. (sr3d6
  987. sr3d6
  988. sr4d6
  989. sr5d6
  990. sd6
  991. srd6
  992. sr2d6
  993. r3d6
  994. r4d6
  995. r5d6
  996. id
  997. rd6
  998. r2d6)
  999. (sr4d6
  1000. sr4d6
  1001. sr5d6
  1002. sd6
  1003. srd6
  1004. sr2d6
  1005. sr3d6
  1006. r2d6
  1007. r3d6
  1008. r4d6
  1009. r5d6
  1010. id
  1011. rd6)
  1012. (sr5d6
  1013. sr5d6
  1014. sd6
  1015. srd6
  1016. sr2d6
  1017. sr3d6
  1018. sr4d6
  1019. rd6
  1020. r2d6
  1021. r3d6
  1022. r4d6
  1023. r5d6
  1024. id)))$
  1025. set!*inverse('d6,
  1026. '((id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)
  1027. (id r5d6 r4d6 r3d6 r2d6 rd6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)))$
  1028. set!*elemasgen('d6,
  1029. '(((rd6) (rd6))
  1030. ((r2d6) (rd6 rd6))
  1031. ((r3d6) (rd6 rd6 rd6))
  1032. ((r4d6) (rd6 rd6 rd6 rd6))
  1033. ((r5d6) (rd6 rd6 rd6 rd6 rd6))
  1034. ((sd6) (sd6))
  1035. ((srd6) (sd6 rd6))
  1036. ((sr2d6) (sd6 rd6 rd6))
  1037. ((sr3d6) (sd6 rd6 rd6 rd6))
  1038. ((sr4d6) (sd6 rd6 rd6 rd6 rd6))
  1039. ((sr5d6) (sd6 rd6 rd6 rd6 rd6 rd6))))$
  1040. set!*group('d6,
  1041. '((id)
  1042. (rd6 r5d6)
  1043. (r2d6 r4d6)
  1044. (r3d6)
  1045. (sr2d6 sd6 sr4d6)
  1046. (srd6 sr5d6 sr3d6)))$
  1047. set!*representation('d6,
  1048. '((id (((1 . 1))))
  1049. (rd6 (((1 . 1))))
  1050. (r2d6 (((1 . 1))))
  1051. (r3d6 (((1 . 1))))
  1052. (r4d6 (((1 . 1))))
  1053. (r5d6 (((1 . 1))))
  1054. (sd6 (((1 . 1))))
  1055. (srd6 (((1 . 1))))
  1056. (sr2d6 (((1 . 1))))
  1057. (sr3d6 (((1 . 1))))
  1058. (sr4d6 (((1 . 1))))
  1059. (sr5d6 (((1 . 1))))),'complex)$
  1060. set!*representation('d6,
  1061. '((id (((1 . 1))))
  1062. (rd6 (((1 . 1))))
  1063. (r2d6 (((1 . 1))))
  1064. (r3d6 (((1 . 1))))
  1065. (r4d6 (((1 . 1))))
  1066. (r5d6 (((1 . 1))))
  1067. (sd6 (((-1 . 1))))
  1068. (srd6 (((-1 . 1))))
  1069. (sr2d6 (((-1 . 1))))
  1070. (sr3d6 (((-1 . 1))))
  1071. (sr4d6 (((-1 . 1))))
  1072. (sr5d6 (((-1 . 1))))),'complex)$
  1073. set!*representation('d6,
  1074. '((id (((1 . 1))))
  1075. (rd6 (((-1 . 1))))
  1076. (r2d6 (((1 . 1))))
  1077. (r3d6 (((-1 . 1))))
  1078. (r4d6 (((1 . 1))))
  1079. (r5d6 (((-1 . 1))))
  1080. (sd6 (((1 . 1))))
  1081. (srd6 (((-1 . 1))))
  1082. (sr2d6 (((1 . 1))))
  1083. (sr3d6 (((-1 . 1))))
  1084. (sr4d6 (((1 . 1))))
  1085. (sr5d6 (((-1 . 1))))),'complex)$
  1086. set!*representation('d6,
  1087. '((id (((1 . 1))))
  1088. (rd6 (((-1 . 1))))
  1089. (r2d6 (((1 . 1))))
  1090. (r3d6 (((-1 . 1))))
  1091. (r4d6 (((1 . 1))))
  1092. (r5d6 (((-1 . 1))))
  1093. (sd6 (((-1 . 1))))
  1094. (srd6 (((1 . 1))))
  1095. (sr2d6 (((-1 . 1))))
  1096. (sr3d6 (((1 . 1))))
  1097. (sr4d6 (((-1 . 1))))
  1098. (sr5d6 (((1 . 1))))),'complex)$
  1099. set!*representation('d6,
  1100. '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1101. (rd6
  1102. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1103. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
  1104. (r2d6
  1105. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1106. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1107. (-1 . 2))))
  1108. (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1109. (r4d6
  1110. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1111. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1112. (r5d6
  1113. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1114. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1115. (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1116. (srd6
  1117. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1118. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1119. (sr2d6
  1120. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1121. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1122. (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1123. (sr4d6
  1124. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1125. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
  1126. (sr5d6
  1127. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1128. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1129. (-1 . 2))))),'complex)$
  1130. set!*representation('d6,
  1131. '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1132. (rd6
  1133. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1134. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1135. (-1 . 2))))
  1136. (r2d6
  1137. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1138. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1139. (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1140. (r4d6
  1141. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1142. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1143. (-1 . 2))))
  1144. (r5d6
  1145. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1146. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1147. (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1148. (srd6
  1149. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1150. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1151. (sr2d6
  1152. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1153. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
  1154. (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1155. (sr4d6
  1156. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1157. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1158. (sr5d6
  1159. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1160. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1161. (1 . 2))))),'complex)$
  1162. set!*representation('d6,
  1163. '(realtype
  1164. (id (((1 . 1))))
  1165. (rd6 (((1 . 1))))
  1166. (r2d6 (((1 . 1))))
  1167. (r3d6 (((1 . 1))))
  1168. (r4d6 (((1 . 1))))
  1169. (r5d6 (((1 . 1))))
  1170. (sd6 (((1 . 1))))
  1171. (srd6 (((1 . 1))))
  1172. (sr2d6 (((1 . 1))))
  1173. (sr3d6 (((1 . 1))))
  1174. (sr4d6 (((1 . 1))))
  1175. (sr5d6 (((1 . 1))))),'real)$
  1176. set!*representation('d6,
  1177. '(realtype
  1178. (id (((1 . 1))))
  1179. (rd6 (((1 . 1))))
  1180. (r2d6 (((1 . 1))))
  1181. (r3d6 (((1 . 1))))
  1182. (r4d6 (((1 . 1))))
  1183. (r5d6 (((1 . 1))))
  1184. (sd6 (((-1 . 1))))
  1185. (srd6 (((-1 . 1))))
  1186. (sr2d6 (((-1 . 1))))
  1187. (sr3d6 (((-1 . 1))))
  1188. (sr4d6 (((-1 . 1))))
  1189. (sr5d6 (((-1 . 1))))),'real)$
  1190. set!*representation('d6,
  1191. '(realtype
  1192. (id (((1 . 1))))
  1193. (rd6 (((-1 . 1))))
  1194. (r2d6 (((1 . 1))))
  1195. (r3d6 (((-1 . 1))))
  1196. (r4d6 (((1 . 1))))
  1197. (r5d6 (((-1 . 1))))
  1198. (sd6 (((1 . 1))))
  1199. (srd6 (((-1 . 1))))
  1200. (sr2d6 (((1 . 1))))
  1201. (sr3d6 (((-1 . 1))))
  1202. (sr4d6 (((1 . 1))))
  1203. (sr5d6 (((-1 . 1))))),'real)$
  1204. set!*representation('d6,
  1205. '(realtype
  1206. (id (((1 . 1))))
  1207. (rd6 (((-1 . 1))))
  1208. (r2d6 (((1 . 1))))
  1209. (r3d6 (((-1 . 1))))
  1210. (r4d6 (((1 . 1))))
  1211. (r5d6 (((-1 . 1))))
  1212. (sd6 (((-1 . 1))))
  1213. (srd6 (((1 . 1))))
  1214. (sr2d6 (((-1 . 1))))
  1215. (sr3d6 (((1 . 1))))
  1216. (sr4d6 (((-1 . 1))))
  1217. (sr5d6 (((1 . 1))))),'real)$
  1218. set!*representation('d6,
  1219. '(realtype
  1220. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1221. (rd6
  1222. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1223. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
  1224. (r2d6
  1225. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1226. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1227. (-1 . 2))))
  1228. (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1229. (r4d6
  1230. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1231. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1232. (r5d6
  1233. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1234. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1235. (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1236. (srd6
  1237. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1238. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1239. (sr2d6
  1240. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1241. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1242. (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1243. (sr4d6
  1244. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1245. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
  1246. (sr5d6
  1247. (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1248. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1249. (-1 . 2))))),'real)$
  1250. set!*representation('d6,
  1251. '(realtype
  1252. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1253. (rd6
  1254. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1255. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1256. (-1 . 2))))
  1257. (r2d6
  1258. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1259. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1260. (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1261. (r4d6
  1262. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1263. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1264. (-1 . 2))))
  1265. (r5d6
  1266. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1267. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1268. (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1269. (srd6
  1270. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1271. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1272. (sr2d6
  1273. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1274. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
  1275. (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1276. (sr4d6
  1277. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1278. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
  1279. (sr5d6
  1280. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1281. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1282. (1 . 2))))),'real)$
  1283. set!*available 'd6$
  1284. set!*elems!*group('c3,'(id rc3 r2c3))$
  1285. set!*generators('c3,'(rc3))$
  1286. set!*relations('c3,'(((rc3 rc3 rc3) (id))))$
  1287. set!*grouptable('c3,
  1288. '((grouptable id rc3 r2c3)
  1289. (id id rc3 r2c3)
  1290. (rc3 rc3 r2c3 id)
  1291. (r2c3 r2c3 id rc3)))$
  1292. set!*inverse('c3,'((id rc3 r2c3) (id r2c3 rc3)))$
  1293. set!*elemasgen('c3,'(((rc3) (rc3)) ((r2c3) (rc3 rc3))))$
  1294. set!*group('c3,'((id) (rc3) (r2c3)))$
  1295. set!*representation('c3,
  1296. '((id (((1 . 1)))) (rc3 (((1 . 1)))) (r2c3 (((1 . 1))))),
  1297. 'complex)$
  1298. set!*representation('c3,
  1299. '((id (((1 . 1))))
  1300. (rc3
  1301. (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1)
  1302. . 2))))
  1303. (r2c3
  1304. (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1)
  1305. . 2))))),'complex)$
  1306. set!*representation('c3,
  1307. '((id (((1 . 1))))
  1308. (rc3
  1309. (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1)
  1310. . 2))))
  1311. (r2c3
  1312. (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1)
  1313. . 2))))),'complex)$
  1314. set!*representation('c3,
  1315. '(realtype
  1316. (id (((1 . 1))))
  1317. (rc3 (((1 . 1))))
  1318. (r2c3 (((1 . 1))))),'real)$
  1319. set!*representation('c3,
  1320. '(complextype
  1321. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1322. (rc3
  1323. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
  1324. ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
  1325. (r2c3
  1326. (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
  1327. ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
  1328. (-1 . 2))))),'real)$
  1329. set!*available 'c3$
  1330. set!*elems!*group('c4,'(id rc4 r2c4 r3c4))$
  1331. set!*generators('c4,'(rc4))$
  1332. set!*relations('c4,'(((rc4 rc4 rc4 rc4) (id))))$
  1333. set!*grouptable('c4,
  1334. '((grouptable id rc4 r2c4 r3c4)
  1335. (id id rc4 r2c4 r3c4)
  1336. (rc4 rc4 r2c4 r3c4 id)
  1337. (r2c4 r2c4 r3c4 id rc4)
  1338. (r3c4 r3c4 id rc4 r2c4)))$
  1339. set!*inverse('c4,'((id rc4 r2c4 r3c4) (id r3c4 r2c4 rc4)))$
  1340. set!*elemasgen('c4,
  1341. '(((rc4) (rc4)) ((r2c4) (rc4 rc4)) ((r3c4) (rc4 rc4 rc4))))$
  1342. set!*group('c4,'((id) (rc4) (r2c4) (r3c4)))$
  1343. set!*representation('c4,
  1344. '((id (((1 . 1))))
  1345. (rc4 (((1 . 1))))
  1346. (r2c4 (((1 . 1))))
  1347. (r3c4 (((1 . 1))))),'complex)$
  1348. set!*representation('c4,
  1349. '((id (((1 . 1))))
  1350. (rc4 (((-1 . 1))))
  1351. (r2c4 (((1 . 1))))
  1352. (r3c4 (((-1 . 1))))),'complex)$
  1353. set!*representation('c4,
  1354. '((id (((1 . 1))))
  1355. (rc4 ((((((i . 1) . 1)) . 1))))
  1356. (r2c4 (((-1 . 1))))
  1357. (r3c4 ((((((i . 1) . -1)) . 1))))),'complex)$
  1358. set!*representation('c4,
  1359. '((id (((1 . 1))))
  1360. (rc4 ((((((i . 1) . -1)) . 1))))
  1361. (r2c4 (((-1 . 1))))
  1362. (r3c4 ((((((i . 1) . 1)) . 1))))),'complex)$
  1363. set!*representation('c4,
  1364. '(realtype
  1365. (id (((1 . 1))))
  1366. (rc4 (((1 . 1))))
  1367. (r2c4 (((1 . 1))))
  1368. (r3c4 (((1 . 1))))),'real)$
  1369. set!*representation('c4,
  1370. '(realtype
  1371. (id (((1 . 1))))
  1372. (rc4 (((-1 . 1))))
  1373. (r2c4 (((1 . 1))))
  1374. (r3c4 (((-1 . 1))))),'real)$
  1375. set!*representation('c4,
  1376. '(complextype
  1377. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1378. (rc4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
  1379. (r2c4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
  1380. (r3c4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))),'real)$
  1381. set!*available 'c4$
  1382. set!*elems!*group('c5,'(id rc5 r2c5 r3c5 r4c5))$
  1383. set!*generators('c5,'(rc5))$
  1384. set!*relations('c5,'(((rc5 rc5 rc5 rc5 rc5) (id))))$
  1385. set!*grouptable('c5,
  1386. '((grouptable id rc5 r2c5 r3c5 r4c5)
  1387. (id id rc5 r2c5 r3c5 r4c5)
  1388. (rc5 rc5 r2c5 r3c5 r4c5 id)
  1389. (r2c5 r2c5 r3c5 r4c5 id rc5)
  1390. (r3c5 r3c5 r4c5 id rc5 r2c5)
  1391. (r4c5 r4c5 id rc5 r2c5 r3c5)))$
  1392. set!*inverse('c5,'((id rc5 r2c5 r3c5 r4c5) (id r4c5 r3c5 r2c5 rc5)))$
  1393. set!*elemasgen('c5,
  1394. '(((rc5) (rc5))
  1395. ((r2c5) (rc5 rc5))
  1396. ((r3c5) (rc5 rc5 rc5))
  1397. ((r4c5) (rc5 rc5 rc5 rc5))))$
  1398. set!*group('c5,'((id) (rc5) (r2c5) (r3c5) (r4c5)))$
  1399. set!*representation('c5,
  1400. '((id (((1 . 1))))
  1401. (rc5 (((1 . 1))))
  1402. (r2c5 (((1 . 1))))
  1403. (r3c5 (((1 . 1))))
  1404. (r4c5 (((1 . 1))))),'complex)$
  1405. set!*representation('c5,
  1406. '((id (((1 . 1))))
  1407. (rc5
  1408. (((((((sin (quotient (times 2 pi) 5)) . 1) ((i . 1) . 1))
  1409. (((cos (quotient (times 2 pi) 5)) . 1) . 1))
  1410. . 1))))
  1411. (r2c5
  1412. (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  1413. (((sin (quotient (times 2 pi) 5)) . 1)
  1414. (((cos (quotient (times 2 pi) 5)) . 1)
  1415. ((i . 1) . 2)))
  1416. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  1417. . 1))))
  1418. (r3c5
  1419. (((((((sin (quotient (times 2 pi) 5)) . 3)
  1420. ((i . 1) . -1))
  1421. (((sin (quotient (times 2 pi) 5)) . 2)
  1422. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  1423. (((sin (quotient (times 2 pi) 5)) . 1)
  1424. (((cos (quotient (times 2 pi) 5)) . 2)
  1425. ((i . 1) . 3)))
  1426. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  1427. . 1))))
  1428. (r4c5
  1429. (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  1430. (((sin (quotient (times 2 pi) 5)) . 3)
  1431. (((cos (quotient (times 2 pi) 5)) . 1)
  1432. ((i . 1) . -4)))
  1433. (((sin (quotient (times 2 pi) 5)) . 2)
  1434. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  1435. (((sin (quotient (times 2 pi) 5)) . 1)
  1436. (((cos (quotient (times 2 pi) 5)) . 3)
  1437. ((i . 1) . 4)))
  1438. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  1439. . 1))))),'complex)$
  1440. set!*representation('c5,
  1441. '((id (((1 . 1))))
  1442. (rc5
  1443. (((((((sin (quotient (times 4 pi) 5)) . 1) ((i . 1) . 1))
  1444. (((cos (quotient (times 4 pi) 5)) . 1) . 1))
  1445. . 1))))
  1446. (r2c5
  1447. (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  1448. (((sin (quotient (times 4 pi) 5)) . 1)
  1449. (((cos (quotient (times 4 pi) 5)) . 1)
  1450. ((i . 1) . 2)))
  1451. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  1452. . 1))))
  1453. (r3c5
  1454. (((((((sin (quotient (times 4 pi) 5)) . 3)
  1455. ((i . 1) . -1))
  1456. (((sin (quotient (times 4 pi) 5)) . 2)
  1457. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  1458. (((sin (quotient (times 4 pi) 5)) . 1)
  1459. (((cos (quotient (times 4 pi) 5)) . 2)
  1460. ((i . 1) . 3)))
  1461. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  1462. . 1))))
  1463. (r4c5
  1464. (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  1465. (((sin (quotient (times 4 pi) 5)) . 3)
  1466. (((cos (quotient (times 4 pi) 5)) . 1)
  1467. ((i . 1) . -4)))
  1468. (((sin (quotient (times 4 pi) 5)) . 2)
  1469. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  1470. (((sin (quotient (times 4 pi) 5)) . 1)
  1471. (((cos (quotient (times 4 pi) 5)) . 3)
  1472. ((i . 1) . 4)))
  1473. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  1474. . 1))))),'complex)$
  1475. set!*representation('c5,
  1476. '((id (((1 . 1))))
  1477. (rc5
  1478. (((((((sin (quotient (times 4 pi) 5)) . 1)
  1479. ((i . 1) . -1))
  1480. (((cos (quotient (times 4 pi) 5)) . 1) . 1))
  1481. . 1))))
  1482. (r2c5
  1483. (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  1484. (((sin (quotient (times 4 pi) 5)) . 1)
  1485. (((cos (quotient (times 4 pi) 5)) . 1)
  1486. ((i . 1) . -2)))
  1487. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  1488. . 1))))
  1489. (r3c5
  1490. (((((((sin (quotient (times 4 pi) 5)) . 3) ((i . 1) . 1))
  1491. (((sin (quotient (times 4 pi) 5)) . 2)
  1492. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  1493. (((sin (quotient (times 4 pi) 5)) . 1)
  1494. (((cos (quotient (times 4 pi) 5)) . 2)
  1495. ((i . 1) . -3)))
  1496. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  1497. . 1))))
  1498. (r4c5
  1499. (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  1500. (((sin (quotient (times 4 pi) 5)) . 3)
  1501. (((cos (quotient (times 4 pi) 5)) . 1)
  1502. ((i . 1) . 4)))
  1503. (((sin (quotient (times 4 pi) 5)) . 2)
  1504. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  1505. (((sin (quotient (times 4 pi) 5)) . 1)
  1506. (((cos (quotient (times 4 pi) 5)) . 3)
  1507. ((i . 1) . -4)))
  1508. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  1509. . 1))))),'complex)$
  1510. set!*representation('c5,
  1511. '((id (((1 . 1))))
  1512. (rc5
  1513. (((((((sin (quotient (times 2 pi) 5)) . 1)
  1514. ((i . 1) . -1))
  1515. (((cos (quotient (times 2 pi) 5)) . 1) . 1))
  1516. . 1))))
  1517. (r2c5
  1518. (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  1519. (((sin (quotient (times 2 pi) 5)) . 1)
  1520. (((cos (quotient (times 2 pi) 5)) . 1)
  1521. ((i . 1) . -2)))
  1522. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  1523. . 1))))
  1524. (r3c5
  1525. (((((((sin (quotient (times 2 pi) 5)) . 3) ((i . 1) . 1))
  1526. (((sin (quotient (times 2 pi) 5)) . 2)
  1527. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  1528. (((sin (quotient (times 2 pi) 5)) . 1)
  1529. (((cos (quotient (times 2 pi) 5)) . 2)
  1530. ((i . 1) . -3)))
  1531. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  1532. . 1))))
  1533. (r4c5
  1534. (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  1535. (((sin (quotient (times 2 pi) 5)) . 3)
  1536. (((cos (quotient (times 2 pi) 5)) . 1)
  1537. ((i . 1) . 4)))
  1538. (((sin (quotient (times 2 pi) 5)) . 2)
  1539. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  1540. (((sin (quotient (times 2 pi) 5)) . 1)
  1541. (((cos (quotient (times 2 pi) 5)) . 3)
  1542. ((i . 1) . -4)))
  1543. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  1544. . 1))))),'complex)$
  1545. set!*representation('c5,
  1546. '(realtype
  1547. (id (((1 . 1))))
  1548. (rc5 (((1 . 1))))
  1549. (r2c5 (((1 . 1))))
  1550. (r3c5 (((1 . 1))))
  1551. (r4c5 (((1 . 1))))),'real)$
  1552. set!*representation('c5,
  1553. '(complextype
  1554. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1555. (rc5
  1556. (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  1557. (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
  1558. ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
  1559. (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
  1560. (r2c5
  1561. (((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  1562. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  1563. . 1)
  1564. (((((sin (quotient (times 2 pi) 5)) . 1)
  1565. (((cos (quotient (times 2 pi) 5)) . 1) . -2)))
  1566. . 1))
  1567. ((((((sin (quotient (times 2 pi) 5)) . 1)
  1568. (((cos (quotient (times 2 pi) 5)) . 1) . 2)))
  1569. . 1)
  1570. (((((sin (quotient (times 2 pi) 5)) . 2) . -1)
  1571. (((cos (quotient (times 2 pi) 5)) . 2) . 1))
  1572. . 1))))
  1573. (r3c5
  1574. (((((((sin (quotient (times 2 pi) 5)) . 2)
  1575. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  1576. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  1577. . 1)
  1578. (((((sin (quotient (times 2 pi) 5)) . 3) . 1)
  1579. (((sin (quotient (times 2 pi) 5)) . 1)
  1580. (((cos (quotient (times 2 pi) 5)) . 2) . -3)))
  1581. . 1))
  1582. ((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
  1583. (((sin (quotient (times 2 pi) 5)) . 1)
  1584. (((cos (quotient (times 2 pi) 5)) . 2) . 3)))
  1585. . 1)
  1586. (((((sin (quotient (times 2 pi) 5)) . 2)
  1587. (((cos (quotient (times 2 pi) 5)) . 1) . -3))
  1588. (((cos (quotient (times 2 pi) 5)) . 3) . 1))
  1589. . 1))))
  1590. (r4c5
  1591. (((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  1592. (((sin (quotient (times 2 pi) 5)) . 2)
  1593. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  1594. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  1595. . 1)
  1596. (((((sin (quotient (times 2 pi) 5)) . 3)
  1597. (((cos (quotient (times 2 pi) 5)) . 1) . 4))
  1598. (((sin (quotient (times 2 pi) 5)) . 1)
  1599. (((cos (quotient (times 2 pi) 5)) . 3) . -4)))
  1600. . 1))
  1601. ((((((sin (quotient (times 2 pi) 5)) . 3)
  1602. (((cos (quotient (times 2 pi) 5)) . 1) . -4))
  1603. (((sin (quotient (times 2 pi) 5)) . 1)
  1604. (((cos (quotient (times 2 pi) 5)) . 3) . 4)))
  1605. . 1)
  1606. (((((sin (quotient (times 2 pi) 5)) . 4) . 1)
  1607. (((sin (quotient (times 2 pi) 5)) . 2)
  1608. (((cos (quotient (times 2 pi) 5)) . 2) . -6))
  1609. (((cos (quotient (times 2 pi) 5)) . 4) . 1))
  1610. . 1))))),'real)$
  1611. set!*representation('c5,
  1612. '(complextype
  1613. (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
  1614. (rc5
  1615. (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  1616. (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
  1617. ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
  1618. (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
  1619. (r2c5
  1620. (((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  1621. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  1622. . 1)
  1623. (((((sin (quotient (times 4 pi) 5)) . 1)
  1624. (((cos (quotient (times 4 pi) 5)) . 1) . -2)))
  1625. . 1))
  1626. ((((((sin (quotient (times 4 pi) 5)) . 1)
  1627. (((cos (quotient (times 4 pi) 5)) . 1) . 2)))
  1628. . 1)
  1629. (((((sin (quotient (times 4 pi) 5)) . 2) . -1)
  1630. (((cos (quotient (times 4 pi) 5)) . 2) . 1))
  1631. . 1))))
  1632. (r3c5
  1633. (((((((sin (quotient (times 4 pi) 5)) . 2)
  1634. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  1635. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  1636. . 1)
  1637. (((((sin (quotient (times 4 pi) 5)) . 3) . 1)
  1638. (((sin (quotient (times 4 pi) 5)) . 1)
  1639. (((cos (quotient (times 4 pi) 5)) . 2) . -3)))
  1640. . 1))
  1641. ((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
  1642. (((sin (quotient (times 4 pi) 5)) . 1)
  1643. (((cos (quotient (times 4 pi) 5)) . 2) . 3)))
  1644. . 1)
  1645. (((((sin (quotient (times 4 pi) 5)) . 2)
  1646. (((cos (quotient (times 4 pi) 5)) . 1) . -3))
  1647. (((cos (quotient (times 4 pi) 5)) . 3) . 1))
  1648. . 1))))
  1649. (r4c5
  1650. (((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  1651. (((sin (quotient (times 4 pi) 5)) . 2)
  1652. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  1653. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  1654. . 1)
  1655. (((((sin (quotient (times 4 pi) 5)) . 3)
  1656. (((cos (quotient (times 4 pi) 5)) . 1) . 4))
  1657. (((sin (quotient (times 4 pi) 5)) . 1)
  1658. (((cos (quotient (times 4 pi) 5)) . 3) . -4)))
  1659. . 1))
  1660. ((((((sin (quotient (times 4 pi) 5)) . 3)
  1661. (((cos (quotient (times 4 pi) 5)) . 1) . -4))
  1662. (((sin (quotient (times 4 pi) 5)) . 1)
  1663. (((cos (quotient (times 4 pi) 5)) . 3) . 4)))
  1664. . 1)
  1665. (((((sin (quotient (times 4 pi) 5)) . 4) . 1)
  1666. (((sin (quotient (times 4 pi) 5)) . 2)
  1667. (((cos (quotient (times 4 pi) 5)) . 2) . -6))
  1668. (((cos (quotient (times 4 pi) 5)) . 4) . 1))
  1669. . 1))))),'real)$
  1670. set!*available 'c5$
  1671. endmodule;
  1672. end;