limits.tex 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. \documentstyle[11pt,reduce]{article}
  2. \title{A REDUCE Limits Package}
  3. \date{}
  4. \author{Stanley L. Kameny \\ Email: stan\%valley.uucp@rand.org}
  5. \begin{document}
  6. \maketitle
  7. \index{LIMITS package}
  8. LIMITS is a fast limit package for REDUCE for functions which are
  9. continuous except for computable poles and singularities, based on some
  10. earlier work by Ian Cohen and John P. Fitch. The Truncated Power Series
  11. package is used for non-critical points, at which the value of the
  12. function is the constant term in the expansion around that point.
  13. \index{l'H\^opital's rule}
  14. l'H\^opital's rule is used in critical cases, with preprocessing of
  15. $\infty - \infty$ forms and reformatting of product forms in order
  16. to apply l'H\^opital's rule. A limited amount of bounded arithmetic
  17. is also employed where applicable.
  18. \section{Normal entry points}
  19. \ttindex{LIMIT}
  20. \vspace{.1in}
  21. \noindent {\tt LIMIT}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  22. LIMPOINT:{\em algebraic}):{\em algebraic}
  23. \vspace{.1in}
  24. This is the standard way of calling limit, applying all of the methods. The
  25. result is the limit of EXPRN as VAR approaches LIMPOINT.
  26. \section{Direction-dependent limits}
  27. \ttindex{LIMIT+} \ttindex{LIMIT-}
  28. \vspace{.1in}
  29. \noindent {\tt LIMIT!+}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  30. LIMPOINT:{\em algebraic}):{\em algebraic} \\
  31. \noindent {\tt LIMIT!-}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  32. LIMPOINT:{\em algebraic}):{\em algebraic}
  33. \vspace{.1in}
  34. If the limit depends upon the direction of approach to the {\tt LIMPOINT},
  35. the functions {\tt LIMIT!+} and {\tt LIMIT!-} may be used. They are
  36. defined by:
  37. \vspace{.1in}
  38. \noindent{\tt LIMIT!+ (LIMIT!-)} (EXP,VAR,LIMPOINT) $\rightarrow$ \\
  39. \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0)
  40. EXP*=sub(VAR=VAR+(-)$\epsilon^2$,EXP)
  41. \section{Diagnostic Functions}
  42. \ttindex{LIMIT0}
  43. \vspace{.1in}
  44. \noindent {\tt LIMIT0}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  45. LIMPOINT:{\em algebraic}):{\em algebraic}
  46. \vspace{.1in}
  47. This function will use all parts of the limits package, but it does not
  48. combine log terms before taking limits, so it may fail if there is a sum
  49. of log terms which have a removable singularity in some of the terms.
  50. \ttindex{LIMIT1}
  51. \vspace{.1in}
  52. \noindent {\tt LIMIT1}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  53. LIMPOINT:{\em algebraic}):{\em algebraic}
  54. \vspace{.1in}
  55. \index{TPS package}
  56. This function uses the TPS branch only, and will fail if the limit point is
  57. singular.
  58. \ttindex{LIMIT2}
  59. \vspace{.1in}
  60. \begin{tabbing}
  61. {\tt LIMIT2}(\=TOP:{\em algebraic}, \\
  62. \>BOT:{\em algebraic}, \\
  63. \>VAR:{\em kernel}, \\
  64. \>LIMPOINT:{\em algebraic}):{\em algebraic}
  65. \end{tabbing}
  66. \vspace{.1in}
  67. This function applies l'H\^opital's rule to the quotient (TOP/BOT).
  68. \end{document}