123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- \documentstyle[11pt,reduce]{article}
- \title{A REDUCE Limits Package}
- \date{}
- \author{Stanley L. Kameny \\ Email: stan\%valley.uucp@rand.org}
- \begin{document}
- \maketitle
- \index{LIMITS package}
- LIMITS is a fast limit package for REDUCE for functions which are
- continuous except for computable poles and singularities, based on some
- earlier work by Ian Cohen and John P. Fitch. The Truncated Power Series
- package is used for non-critical points, at which the value of the
- function is the constant term in the expansion around that point.
- \index{l'H\^opital's rule}
- l'H\^opital's rule is used in critical cases, with preprocessing of
- $\infty - \infty$ forms and reformatting of product forms in order
- to apply l'H\^opital's rule. A limited amount of bounded arithmetic
- is also employed where applicable.
- \section{Normal entry points}
- \ttindex{LIMIT}
- \vspace{.1in}
- \noindent {\tt LIMIT}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic}
- \vspace{.1in}
- This is the standard way of calling limit, applying all of the methods. The
- result is the limit of EXPRN as VAR approaches LIMPOINT.
- \section{Direction-dependent limits}
- \ttindex{LIMIT+} \ttindex{LIMIT-}
- \vspace{.1in}
- \noindent {\tt LIMIT!+}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic} \\
- \noindent {\tt LIMIT!-}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic}
- \vspace{.1in}
- If the limit depends upon the direction of approach to the {\tt LIMPOINT},
- the functions {\tt LIMIT!+} and {\tt LIMIT!-} may be used. They are
- defined by:
- \vspace{.1in}
- \noindent{\tt LIMIT!+ (LIMIT!-)} (EXP,VAR,LIMPOINT) $\rightarrow$ \\
- \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0)
- EXP*=sub(VAR=VAR+(-)$\epsilon^2$,EXP)
- \section{Diagnostic Functions}
- \ttindex{LIMIT0}
- \vspace{.1in}
- \noindent {\tt LIMIT0}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic}
- \vspace{.1in}
- This function will use all parts of the limits package, but it does not
- combine log terms before taking limits, so it may fail if there is a sum
- of log terms which have a removable singularity in some of the terms.
- \ttindex{LIMIT1}
- \vspace{.1in}
- \noindent {\tt LIMIT1}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic}
- \vspace{.1in}
- \index{TPS package}
- This function uses the TPS branch only, and will fail if the limit point is
- singular.
- \ttindex{LIMIT2}
- \vspace{.1in}
- \begin{tabbing}
- {\tt LIMIT2}(\=TOP:{\em algebraic}, \\
- \>BOT:{\em algebraic}, \\
- \>VAR:{\em kernel}, \\
- \>LIMPOINT:{\em algebraic}):{\em algebraic}
- \end{tabbing}
- \vspace{.1in}
- This function applies l'H\^opital's rule to the quotient (TOP/BOT).
- \end{document}
|