123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866 |
- <a name=r38_0450>
- <title>ZETA</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ZETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Zeta</em> operator returns Riemann's Zeta function,
- <P>
- <P>
- Zeta (z) := sum(1/(k**z),k,1,infinity)
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Zeta</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Zeta(2);
- 2
- pi / 6
- on rounded;
- Zeta 1.01;
- 100.577943338
- </tt></pre><p>Numerical computation for the Zeta function for arguments close to
- 1 are
- tedious, because the series is converging very slowly. In this case a formula
- (e.g. found in Bender/Orzag: Advanced Mathematical Methods for
- Scientists and Engineers, McGraw-Hill) is used.
- <P>
- <P>
- No numerical approximation for complex arguments is done.
- <P>
- <P>
- <P>
- <a name=r38_0451>
- <title>Bernoulli Euler Zeta</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Bernoulli Euler Zeta</b><menu>
- <li><a href=r38_0400.html#r38_0446>BERNOULLI operator</a><P>
- <li><a href=r38_0400.html#r38_0447>BERNOULLIP operator</a><P>
- <li><a href=r38_0400.html#r38_0448>EULER operator</a><P>
- <li><a href=r38_0400.html#r38_0449>EULERP operator</a><P>
- <li><a href=r38_0450.html#r38_0450>ZETA operator</a><P>
- </menu>
- <a name=r38_0452>
- <title>BESSELJ</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>BESSELJ</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>BesselJ</em> operator returns the Bessel function of the first kind.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>BesselJ</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- BesselJ(1/2,pi);
- 0
- on rounded;
- BesselJ(0,1);
- 0.765197686558
- </tt></pre><p>
- <a name=r38_0453>
- <title>BESSELY</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>BESSELY</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>BesselY</em> operator returns the Bessel function of the second kind.
- <P> <H3>
- syntax: </H3>
- <P>
- <P>
- <em>BesselY</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- BesselY (1/2,pi);
- - sqrt(2) / pi
- on rounded;
- BesselY (1,3);
- 0.324674424792
- </tt></pre><p>The operator <em>BesselY</em> is also called Weber's function.
- <P>
- <P>
- <P>
- <a name=r38_0454>
- <title>HANKEL1</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>HANKEL1</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Hankel1</em> operator returns the Hankel function of the first kind.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Hankel1</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- on complex;
- Hankel1 (1/2,pi);
- - i * sqrt(2) / pi
- Hankel1 (1,pi);
- besselj(1,pi) + i*bessely(1,pi)
- </tt></pre><p>The operator <em>Hankel1</em> is also called Bessel function of th
- e third kind.
- There is currently no numeric evaluation of Hankel functions.
- <P>
- <P>
- <P>
- <a name=r38_0455>
- <title>HANKEL2</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>HANKEL2</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Hankel2</em> operator returns the Hankel function of the second kind.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Hankel2</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- on complex;
- Hankel2 (1/2,pi);
- - i * sqrt(2) / pi
- Hankel2 (1,pi);
- besselj(1,pi) - i*bessely(1,pi)
- </tt></pre><p>The operator <em>Hankel2</em> is also called Bessel function of th
- e third kind.
- There is currently no numeric evaluation of Hankel functions.
- <P>
- <P>
- <P>
- <a name=r38_0456>
- <title>BESSELI</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>BESSELI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>BesselI</em> operator returns the modified Bessel function I.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>BesselI</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- on rounded;
- Besseli (1,1);
- 0.565159103992
- </tt></pre><p>The knowledge about the operator <em>BesselI</em> is currently fai
- rly limited.
- <P>
- <P>
- <P>
- <a name=r38_0457>
- <title>BESSELK</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>BESSELK</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>BesselK</em> operator returns the modified Bessel function K.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>BesselK</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- df(besselk(0,x),x);
- - besselk(1,x)
- </tt></pre><p>There is currently no numeric support for the operator <em>BesselK
- </em>.
- <P>
- <P>
- <P>
- <a name=r38_0458>
- <title>StruveH</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>STRUVEH</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>StruveH</em> operator returns Struve's H function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>StruveH</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- struveh(-3/2,x);
- - besselj(3/2,x) / i
- </tt></pre><p>
- <a name=r38_0459>
- <title>StruveL</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>STRUVEL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>StruveL</em> operator returns the modified Struve L function .
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>StruveL</em>(<order>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- struvel(-3/2,x);
- besseli(3/2,x)
- </tt></pre><p>
- <a name=r38_0460>
- <title>KummerM</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>KUMMERM</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>KummerM</em> operator returns Kummer's M function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>KummerM</em>(<parameter>,<parameter>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- kummerm(1,1,x);
- x
- e
- on rounded;
- kummerm(1,3,1.3);
- 1.62046942914
- </tt></pre><p>Kummer's M function is one of the Confluent Hypergeometric functio
- ns.
- For reference see the
- <a href=r38_0500.html#r38_0529>hypergeometric</a> operator.
- <P>
- <P>
- <P>
- <a name=r38_0461>
- <title>KummerU</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>KUMMERU</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>KummerU</em> operator returns Kummer's U function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>KummerU</em>(<parameter>,<parameter>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- df(kummeru(1,1,x),x)
- - kummeru(2,2,x)
- </tt></pre><p>Kummer's U function is one of the Confluent Hypergeometric functio
- ns.
- For reference see the
- <a href=r38_0500.html#r38_0529>hypergeometric</a> operator.
- <P>
- <P>
- <P>
- <a name=r38_0462>
- <title>WhittakerW</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>WHITTAKERW</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>WhittakerW</em> operator returns Whittaker's W function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>WhittakerW</em>(<parameter>,<parameter>,<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- WhittakerW(2,2,2);
- 1
- 4*sqrt(2)*kummeru(-,5,2)
- 2
- -------------------------
- e
- </tt></pre><p>Whittaker's W function is one of the Confluent Hypergeometric func
- tions.
- For reference see the
- <a href=r38_0500.html#r38_0529>hypergeometric</a> operator.
- <P>
- <P>
- <P>
- <a name=r38_0463>
- <title>Bessel Functions</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Bessel Functions</b><menu>
- <li><a href=r38_0450.html#r38_0452>BESSELJ operator</a><P>
- <li><a href=r38_0450.html#r38_0453>BESSELY operator</a><P>
- <li><a href=r38_0450.html#r38_0454>HANKEL1 operator</a><P>
- <li><a href=r38_0450.html#r38_0455>HANKEL2 operator</a><P>
- <li><a href=r38_0450.html#r38_0456>BESSELI operator</a><P>
- <li><a href=r38_0450.html#r38_0457>BESSELK operator</a><P>
- <li><a href=r38_0450.html#r38_0458>StruveH operator</a><P>
- <li><a href=r38_0450.html#r38_0459>StruveL operator</a><P>
- <li><a href=r38_0450.html#r38_0460>KummerM operator</a><P>
- <li><a href=r38_0450.html#r38_0461>KummerU operator</a><P>
- <li><a href=r38_0450.html#r38_0462>WhittakerW operator</a><P>
- </menu>
- <a name=r38_0464>
- <title>Airy_Ai</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>AIRY_AI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Airy_Ai</em> operator returns the Airy Ai function for a given argument.
-
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Airy_Ai</em>(<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- on complex;
- on rounded;
- Airy_Ai(0);
- 0.355028053888
- Airy_Ai(3.45 + 17.97i);
- - 5.5561528511e+9 - 8.80397899932e+9*i
- </tt></pre><p>
- <a name=r38_0465>
- <title>Airy_Bi</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>AIRY_BI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Airy_Bi</em> operator returns the Airy Bi function for a given
- argument.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Airy_Bi</em>(<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Airy_Bi(0);
- 0.614926627446
- Airy_Bi(3.45 + 17.97i);
- 8.80397899932e+9 - 5.5561528511e+9*i
- </tt></pre><p>
- <a name=r38_0466>
- <title>Airy_Aiprime</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>AIRY_AIPRIME</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Airy_Aiprime</em> operator returns the Airy Aiprime function for a
- given argument.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Airy_Aiprime</em>(<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Airy_Aiprime(0);
- - 0.258819403793
- Airy_Aiprime(3.45+17.97i);
- - 3.83386421824e+19 + 2.16608828136e+19*i
- </tt></pre><p>
- <a name=r38_0467>
- <title>Airy_Biprime</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>AIRY_BIPRIME</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Airy_Biprime</em> operator returns the Airy Biprime function for a
- given argument.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Airy_Biprime</em>(<argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Airy_Biprime(0);
- Airy_Biprime(3.45 + 17.97i);
- 3.84251916792e+19 - 2.18006297399e+19*i
- </tt></pre><p>
- <a name=r38_0468>
- <title>Airy Functions</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Airy Functions</b><menu>
- <li><a href=r38_0450.html#r38_0464>Airy_Ai operator</a><P>
- <li><a href=r38_0450.html#r38_0465>Airy_Bi operator</a><P>
- <li><a href=r38_0450.html#r38_0466>Airy_Aiprime operator</a><P>
- <li><a href=r38_0450.html#r38_0467>Airy_Biprime operator</a><P>
- </menu>
- <a name=r38_0469>
- <title>JacobiSN</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBISN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobisn</em> operator returns the Jacobi Elliptic function sn.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobisn</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobisn(0.672, 0.36)
- 0.609519691792
- Jacobisn(1,0.9)
- 0.770085724907881
- </tt></pre><p>
- <a name=r38_0470>
- <title>JacobiCN</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBICN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobicn</em> operator returns the Jacobi Elliptic function cn.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobicn</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobicn(7.2, 0.6)
- 0.837288298482018
- Jacobicn(0.11, 19)
- 0.994403862690043 - 1.6219006985556e-16*i
- </tt></pre><p>
- <a name=r38_0471>
- <title>JacobiDN</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBIDN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobidn</em> operator returns the Jacobi Elliptic function dn.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobidn</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobidn(15, 0.683)
- 0.640574162024592
- Jacobidn(0,0)
- 1
- </tt></pre><p>
- <a name=r38_0472>
- <title>JacobiCD</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBICD</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobicd</em> operator returns the Jacobi Elliptic function cd.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobicd</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobicd(1, 0.34)
- 0.657683337805273
- Jacobicd(0.8,0.8)
- 0.925587311582301
- </tt></pre><p>
- <a name=r38_0473>
- <title>JacobiSD</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBISD</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobisd</em> operator returns the Jacobi Elliptic function sd.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobisd</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobisd(12, 0.4)
- 0.357189729437272
- Jacobisd(0.35,1)
- - 1.17713873203043
- </tt></pre><p>
- <a name=r38_0474>
- <title>JacobiND</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBIND</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobind</em> operator returns the Jacobi Elliptic function nd.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobind</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobind(0.2, 17)
- 1.46553203037507 + 0.0000000000334032759313703*i
- Jacobind(30, 0.001)
- 1.00048958438
- </tt></pre><p>
- <a name=r38_0475>
- <title>JacobiDC</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBIDC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobidc</em> operator returns the Jacobi Elliptic function dc.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobidc</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobidc(0.003,1)
- 1
- Jacobidc(2, 0.75)
- 6.43472885111
- </tt></pre><p>
- <a name=r38_0476>
- <title>JacobiNC</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBINC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobinc</em> operator returns the Jacobi Elliptic function nc.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobinc</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobinc(1,0)
- 1.85081571768093
- Jacobinc(56, 0.4387)
- 39.304842663512
- </tt></pre><p>
- <a name=r38_0477>
- <title>JacobiSC</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBISC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobisc</em> operator returns the Jacobi Elliptic function sc.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobisc</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobisc(9, 0.88)
- - 1.16417697982095
- Jacobisc(0.34, 7)
- 0.305851938390775 - 9.8768100944891e-12*i
- </tt></pre><p>
- <a name=r38_0478>
- <title>JacobiNS</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBINS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobins</em> operator returns the Jacobi Elliptic function ns.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobins</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobins(3, 0.9)
- 1.00945801599785
- Jacobins(0.887, 15)
- 0.683578280513975 - 0.85023411082469*i
- </tt></pre><p>
- <a name=r38_0479>
- <title>JacobiDS</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBIDS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobisn</em> operator returns the Jacobi Elliptic function ds.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobids</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobids(98,0.223)
- - 1.061253961477
- Jacobids(0.36,0.6)
- 2.76693172243692
- </tt></pre><p>
- <a name=r38_0480>
- <title>JacobiCS</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBICS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Jacobics</em> operator returns the Jacobi Elliptic function cs.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Jacobics</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Jacobics(0, 0.767)
- infinity
- Jacobics(1.43, 0)
- 0.141734127352112
- </tt></pre><p>
- <a name=r38_0481>
- <title>JacobiAMPLITUDE</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBIAMPLITUDE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>JacobiAmplitude</em> operator returns the amplitude of u.
- <P> <H3>
- syntax: </H3>
- <P>
- <P>
- <em>JacobiAmplitude</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- JacobiAmplitude(7.239, 0.427)
- 0.0520978301448978
- JacobiAmplitude(0,0.1)
- 0
- </tt></pre><p>Amplitude u = asin(<em>Jacobisn(u,m)</em>)
- <P>
- <P>
- <P>
- <a name=r38_0482>
- <title>AGM_FUNCTION</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>AGM_FUNCTION</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>AGM_function</em> operator returns a list of (N, AGM,
- list of aNtoa0, list of bNtob0, list of cNtoc0) where a0, b0 and c0
- are the initial values; N is the index number of the last term
- used to generate the AGM. AGM is the Arithmetic Geometric Mean.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>AGM_function</em>(<integer>,<integer>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- AGM_function(1,1,1)
- 1,1,1,1,1,1,0,1
- AGM_function(1, 0.1, 1.3)
- {6,
- 2.27985615996629,
- {2.27985615996629, 2.27985615996629,
- 2.2798561599706, 2.2798624278857,
- 2.28742283656583, 2.55, 1},
- {2.27985615996629, 2.27985615996629,
- 2.27985615996198, 2.2798498920555,
- 2.27230201920557, 2.02484567313166, 4.1},
- {0, 4.30803136219904e-12, 0.0000062679151007581,
- 0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}
- </tt></pre><p>The other Jacobi functions use this function with initial values
- a0=1, b0=sqrt(1-m), c0=sqrt(m).
- <P>
- <P>
- <P>
- <a name=r38_0483>
- <title>LANDENTRANS</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>LANDENTRANS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>landentrans</em> operator generates the descending landen
- transformation of the given imput values, returning a list of these
- values; initial to final in each case.
- <P> <H3>
- syntax: </H3>
- <P>
- <P>
- <em>landentrans</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- landentrans(0,0.1)
- {{0,0,0,0,0},{0.1,0.0025041751943776,
-
- 0.00000156772498954046,6.1444078 9914461e-13,0}}
- </tt></pre><p>The first list ascends in value, and the second descends in value.
-
- <P>
- <P>
- <P>
- <a name=r38_0484>
- <title>EllipticF</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ELLIPTICF</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>EllipticF</em> operator returns the Elliptic Integral of the
- First Kind.
- <P> <H3>
- syntax: </H3>
- <P>
- <P>
- <em>EllitpicF</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- EllipticF(0.3, 8.222)
- 0.3
- EllipticF(7.396, 0.1)
- 7.58123216114307
- </tt></pre><p>The Complete Elliptic Integral of the First Kind can be found by
- putting the first argument to pi/2 or by using <em>EllipticK</em>
- and the second argument.
- <P>
- <P>
- <P>
- <a name=r38_0485>
- <title>EllipticK</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ELLIPTICK</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>EllipticK</em> operator returns the Elliptic value K.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>EllipticK</em>(<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- EllipticK(0.2)
- 1.65962359861053
- EllipticK(4.3)
- 0.808442364282734 - 1.05562492399206*i
- EllipticK(0.000481)
- 1.57098526617635
- </tt></pre><p>The <em>EllipticK</em> function is the Complete Elliptic Integral
- of
- the First Kind.
- <P>
- <P>
- <P>
- <a name=r38_0486>
- <title>EllipticKprime</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ELLIPTICKPRIME</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>EllipticK'</em> operator returns the Elliptic value K(m).
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>EllipticKprime</em>(<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- EllipticKprime(0.2)
- 2.25720532682085
- EllipticKprime(4.3)
- 1.05562492399206
- EllipticKprime(0.000481)
- 5.206621921966
- </tt></pre><p>The <em>EllipticKprime</em> function is the Complete Elliptic Inte
- gral of
- the First Kind of (1-m).
- <P>
- <P>
- <P>
- <a name=r38_0487>
- <title>EllipticE</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ELLIPTICE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>EllipticE</em> operator used with two arguments
- returns the Elliptic Integral of the Second Kind.
- <P> <H3>
- syntax: </H3>
- <P>
- <P>
- <em>EllipticE</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- EllipticE(1.2,0.22)
- 1.15094019180949
- EllipticE(0,4.35)
- 0
- EllipticE(9,0.00719)
- 8.98312465929145
- </tt></pre><p>The Complete Elliptic Integral of the Second Kind can be obtained
- by
- using just the second argument, or by using pi/2 as the first argument.
- <P>
- <P>
- <P>
- The <em>EllipticE</em> operator used with one argument
- returns the Elliptic value E.
- <P> <H3>
- syntax: </H3>
- <P>
- <P>
- <em>EllipticE</em>(<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- EllipticE(0.22)
- 1.48046637439519
- EllipticE(pi/2, 0.22)
- 1.48046637439519
- </tt></pre><p>
- <a name=r38_0488>
- <title>EllipticTHETA</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ELLIPTICTHETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>EllipticTheta</em> operator returns one of the four Theta
- functions. It cannot except any number other than 1,2,3 or 4 as
- its first argument.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>EllipticTheta</em>(<integer>,<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- EllipticTheta(1, 1.4, 0.72)
- 0.91634775373
- EllipticTheta(2, 3.9, 6.1 )
- -48.0202736969 + 20.9881034377 i
- EllipticTheta(3, 0.67, 0.2)
- 1.0083077448
- EllipticTheta(4, 8, 0.75)
- 0.894963369304
- EllipticTheta(5, 1, 0.1)
- ***** In EllipticTheta(a,u,m); a = 1,2,3 or 4.
- </tt></pre><p>Theta functions are important because every one of the Jacobian
- Elliptic functions can be expressed as the ratio of two theta functions.
- <P>
- <P>
- <P>
- <a name=r38_0489>
- <title>JacobiZETA</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBIZETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>JacobiZeta</em> operator returns the Jacobian function Zeta.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>JacobiZeta</em>(<expression>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- JacobiZeta(3.2, 0.8)
- - 0.254536403439
- JacobiZeta(0.2, 1.6)
- 0.171766095970451 - 0.0717028569800147*i
- </tt></pre><p>The Jacobian function Zeta is related to the Jacobian function The
- ta.
- But it is significantly different from Riemann's Zeta Function
- <a href=r38_0450.html#r38_0450>Zeta</a>.
- <P>
- <P>
- <P>
- <a name=r38_0490>
- <title>Jacobi's Elliptic Functions and Elliptic Integrals</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Jacobi's Elliptic Functions and Elliptic Integrals</b><menu>
- <li><a href=r38_0450.html#r38_0469>JacobiSN operator</a><P>
- <li><a href=r38_0450.html#r38_0470>JacobiCN operator</a><P>
- <li><a href=r38_0450.html#r38_0471>JacobiDN operator</a><P>
- <li><a href=r38_0450.html#r38_0472>JacobiCD operator</a><P>
- <li><a href=r38_0450.html#r38_0473>JacobiSD operator</a><P>
- <li><a href=r38_0450.html#r38_0474>JacobiND operator</a><P>
- <li><a href=r38_0450.html#r38_0475>JacobiDC operator</a><P>
- <li><a href=r38_0450.html#r38_0476>JacobiNC operator</a><P>
- <li><a href=r38_0450.html#r38_0477>JacobiSC operator</a><P>
- <li><a href=r38_0450.html#r38_0478>JacobiNS operator</a><P>
- <li><a href=r38_0450.html#r38_0479>JacobiDS operator</a><P>
- <li><a href=r38_0450.html#r38_0480>JacobiCS operator</a><P>
- <li><a href=r38_0450.html#r38_0481>JacobiAMPLITUDE operator</a><P>
- <li><a href=r38_0450.html#r38_0482>AGM_FUNCTION operator</a><P>
- <li><a href=r38_0450.html#r38_0483>LANDENTRANS operator</a><P>
- <li><a href=r38_0450.html#r38_0484>EllipticF operator</a><P>
- <li><a href=r38_0450.html#r38_0485>EllipticK operator</a><P>
- <li><a href=r38_0450.html#r38_0486>EllipticKprime operator</a><P>
- <li><a href=r38_0450.html#r38_0487>EllipticE operator</a><P>
- <li><a href=r38_0450.html#r38_0488>EllipticTHETA operator</a><P>
- <li><a href=r38_0450.html#r38_0489>JacobiZETA operator</a><P>
- </menu>
- <a name=r38_0491>
- <title>POCHHAMMER</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>POCHHAMMER</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Pochhammer</em> operator implements the Pochhammer notation
- (shifted factorial).
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Pochhammer</em>(<expression>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- pochhammer(17,4);
- 116280
- pochhammer(1/2,z);
- factorial(2*z)
- --------------------
- 2*z
- (2 *factorial(z))
- </tt></pre><p>A number of complex rules for <em>Pochhammer</em> are inactive, be
- cause they
- cause a huge system load in algebraic mode. If one wants to use more rules
- for the simplification of Pochhammer's notation, one can do:
- <P>
- <P>
- let special!*pochhammer!*rules;
- <P>
- <P>
- <P>
- <P>
- <a name=r38_0492>
- <title>GAMMA</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>GAMMA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Gamma</em> operator returns the Gamma function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Gamma</em>(<expression>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- gamma(10);
- 362880
- gamma(1/2);
- sqrt(pi)
- </tt></pre><p>
- <a name=r38_0493>
- <title>BETA</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>BETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Beta</em> operator returns the Beta function defined by
- <P>
- <P>
- Beta (z,w) := defint(t**(z-1)* (1 - t)**(w-1),t,0,1) .
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Beta</em>(<expression>,<expression>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Beta(2,2);
- 1 / 6
- Beta(x,y);
- gamma(x)*gamma(y) / gamma(x + y)
- </tt></pre><p>The operator <em>Beta</em> is simplified towards the
- <a href=r38_0450.html#r38_0492>GAMMA</a> operator.
- <P>
- <P>
- <P>
- <a name=r38_0494>
- <title>PSI</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>PSI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Psi</em> operator returns the Psi (or DiGamma) function.
- <P>
- <P>
- Psi(x) := df(Gamma(z),z)/ Gamma (z)
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Gamma</em>(<expression>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Psi(3);
- (2*log(2) + psi(1/2) + psi(1) + 3)/2
- on rounded;
- - Psi(1);
- 0.577215664902
- </tt></pre><p>Euler's constant can be found as - Psi(1).
- <P>
- <P>
- <P>
- <a name=r38_0495>
- <title>POLYGAMMA</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>POLYGAMMA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Polygamma</em> operator returns the Polygamma function.
- <P>
- <P>
- Polygamma(n,x) := df(Psi(z),z,n);
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Polygamma</em>(<integer>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Polygamma(1,2);
- 2
- (pi - 6) / 6
- on rounded;
- Polygamma(1,2.35);
- 0.52849689109
- </tt></pre><p>The Polygamma function is used for simplification of the
- <a href=r38_0450.html#r38_0450>ZETA</a>
- function for some arguments.
- <P>
- <P>
- <P>
- <a name=r38_0496>
- <title>Gamma and Related Functions</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Gamma and Related Functions</b><menu>
- <li><a href=r38_0450.html#r38_0491>POCHHAMMER operator</a><P>
- <li><a href=r38_0450.html#r38_0492>GAMMA operator</a><P>
- <li><a href=r38_0450.html#r38_0493>BETA operator</a><P>
- <li><a href=r38_0450.html#r38_0494>PSI operator</a><P>
- <li><a href=r38_0450.html#r38_0495>POLYGAMMA operator</a><P>
- </menu>
- <a name=r38_0497>
- <title>DILOG_extended</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>DILOG EXTENDED</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The package <em>specfn</em> supplies an extended support for the
- <a href=r38_0050.html#r38_0078>dilog</a> operator which implements the <em>dilog
- arithm function</em>.
- <P>
- <P>
- dilog(x) := - defint(log(t)/(t - 1),t,1,x);
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Dilog</em>(<order>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- defint(log(t)/(t - 1),t,1,x);
- - dilog (x)
- dilog 2;
- 2
- - pi /12
- on rounded;
- Dilog 20;
- - 5.92783972438
- </tt></pre><p>The operator <em>Dilog</em> is sometimes called Spence's Integral
- for n = 2.
- <P>
- <P>
- <P>
- <a name=r38_0498>
- <title>Lambert_W_function</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>LAMBERT\_W FUNCTION</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- Lambert's W function is the inverse of the function w * e**w.
- It is used in the
- <a href=r38_0150.html#r38_0179>solve</a> package for equations containing
- exponentials and logarithms.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Lambert_W</em>(<z>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Lambert_W(-1/e);
- -1
- solve(w + log(w),w);
- w=lambert_w(1)
- on rounded;
- Lambert_W(-0.05);
- - 0.0527059835515
- </tt></pre><p>The current implementation will compute the principal branch in
- rounded mode only.
- <P>
- <P>
- <P>
- <a name=r38_0499>
- <title>Miscellaneous Functions</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Miscellaneous Functions</b><menu>
- <li><a href=r38_0450.html#r38_0497>DILOG extended operator</a><P>
- <li><a href=r38_0450.html#r38_0498>Lambert\_W function operator</a><P>
- </menu>
|