r38_0450.html 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866
  1. <a name=r38_0450>
  2. <title>ZETA</title></a>
  3. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  4. E"></p>
  5. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  6. <b>ZETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  7. <P>
  8. The <em>Zeta</em> operator returns Riemann's Zeta function,
  9. <P>
  10. <P>
  11. Zeta (z) := sum(1/(k**z),k,1,infinity)
  12. <P>
  13. <P>
  14. <P> <H3>
  15. syntax: </H3>
  16. <em>Zeta</em>(&lt;expression&gt;)
  17. <P>
  18. <P>
  19. <P>
  20. <P> <H3>
  21. examples: </H3>
  22. <p><pre><tt>
  23. Zeta(2);
  24. 2
  25. pi / 6
  26. on rounded;
  27. Zeta 1.01;
  28. 100.577943338
  29. </tt></pre><p>Numerical computation for the Zeta function for arguments close to
  30. 1 are
  31. tedious, because the series is converging very slowly. In this case a formula
  32. (e.g. found in Bender/Orzag: Advanced Mathematical Methods for
  33. Scientists and Engineers, McGraw-Hill) is used.
  34. <P>
  35. <P>
  36. No numerical approximation for complex arguments is done.
  37. <P>
  38. <P>
  39. <P>
  40. <a name=r38_0451>
  41. <title>Bernoulli Euler Zeta</title></a>
  42. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  43. E"></p>
  44. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  45. <b>Bernoulli Euler Zeta</b><menu>
  46. <li><a href=r38_0400.html#r38_0446>BERNOULLI operator</a><P>
  47. <li><a href=r38_0400.html#r38_0447>BERNOULLIP operator</a><P>
  48. <li><a href=r38_0400.html#r38_0448>EULER operator</a><P>
  49. <li><a href=r38_0400.html#r38_0449>EULERP operator</a><P>
  50. <li><a href=r38_0450.html#r38_0450>ZETA operator</a><P>
  51. </menu>
  52. <a name=r38_0452>
  53. <title>BESSELJ</title></a>
  54. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  55. E"></p>
  56. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  57. <b>BESSELJ</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  58. <P>
  59. The <em>BesselJ</em> operator returns the Bessel function of the first kind.
  60. <P>
  61. <P>
  62. <P> <H3>
  63. syntax: </H3>
  64. <em>BesselJ</em>(&lt;order&gt;,&lt;argument&gt;)
  65. <P>
  66. <P>
  67. <P>
  68. <P> <H3>
  69. examples: </H3>
  70. <p><pre><tt>
  71. BesselJ(1/2,pi);
  72. 0
  73. on rounded;
  74. BesselJ(0,1);
  75. 0.765197686558
  76. </tt></pre><p>
  77. <a name=r38_0453>
  78. <title>BESSELY</title></a>
  79. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  80. E"></p>
  81. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  82. <b>BESSELY</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  83. <P>
  84. <P>
  85. <P>
  86. The <em>BesselY</em> operator returns the Bessel function of the second kind.
  87. <P> <H3>
  88. syntax: </H3>
  89. <P>
  90. <P>
  91. <em>BesselY</em>(&lt;order&gt;,&lt;argument&gt;)
  92. <P>
  93. <P>
  94. <P>
  95. <P> <H3>
  96. examples: </H3>
  97. <p><pre><tt>
  98. BesselY (1/2,pi);
  99. - sqrt(2) / pi
  100. on rounded;
  101. BesselY (1,3);
  102. 0.324674424792
  103. </tt></pre><p>The operator <em>BesselY</em> is also called Weber's function.
  104. <P>
  105. <P>
  106. <P>
  107. <a name=r38_0454>
  108. <title>HANKEL1</title></a>
  109. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  110. E"></p>
  111. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  112. <b>HANKEL1</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  113. <P>
  114. The <em>Hankel1</em> operator returns the Hankel function of the first kind.
  115. <P>
  116. <P>
  117. <P> <H3>
  118. syntax: </H3>
  119. <em>Hankel1</em>(&lt;order&gt;,&lt;argument&gt;)
  120. <P>
  121. <P>
  122. <P>
  123. <P> <H3>
  124. examples: </H3>
  125. <p><pre><tt>
  126. on complex;
  127. Hankel1 (1/2,pi);
  128. - i * sqrt(2) / pi
  129. Hankel1 (1,pi);
  130. besselj(1,pi) + i*bessely(1,pi)
  131. </tt></pre><p>The operator <em>Hankel1</em> is also called Bessel function of th
  132. e third kind.
  133. There is currently no numeric evaluation of Hankel functions.
  134. <P>
  135. <P>
  136. <P>
  137. <a name=r38_0455>
  138. <title>HANKEL2</title></a>
  139. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  140. E"></p>
  141. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  142. <b>HANKEL2</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  143. <P>
  144. The <em>Hankel2</em> operator returns the Hankel function of the second kind.
  145. <P>
  146. <P>
  147. <P> <H3>
  148. syntax: </H3>
  149. <em>Hankel2</em>(&lt;order&gt;,&lt;argument&gt;)
  150. <P>
  151. <P>
  152. <P>
  153. <P> <H3>
  154. examples: </H3>
  155. <p><pre><tt>
  156. on complex;
  157. Hankel2 (1/2,pi);
  158. - i * sqrt(2) / pi
  159. Hankel2 (1,pi);
  160. besselj(1,pi) - i*bessely(1,pi)
  161. </tt></pre><p>The operator <em>Hankel2</em> is also called Bessel function of th
  162. e third kind.
  163. There is currently no numeric evaluation of Hankel functions.
  164. <P>
  165. <P>
  166. <P>
  167. <a name=r38_0456>
  168. <title>BESSELI</title></a>
  169. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  170. E"></p>
  171. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  172. <b>BESSELI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  173. <P>
  174. The <em>BesselI</em> operator returns the modified Bessel function I.
  175. <P>
  176. <P>
  177. <P> <H3>
  178. syntax: </H3>
  179. <em>BesselI</em>(&lt;order&gt;,&lt;argument&gt;)
  180. <P>
  181. <P>
  182. <P>
  183. <P> <H3>
  184. examples: </H3>
  185. <p><pre><tt>
  186. on rounded;
  187. Besseli (1,1);
  188. 0.565159103992
  189. </tt></pre><p>The knowledge about the operator <em>BesselI</em> is currently fai
  190. rly limited.
  191. <P>
  192. <P>
  193. <P>
  194. <a name=r38_0457>
  195. <title>BESSELK</title></a>
  196. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  197. E"></p>
  198. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  199. <b>BESSELK</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  200. <P>
  201. The <em>BesselK</em> operator returns the modified Bessel function K.
  202. <P>
  203. <P>
  204. <P> <H3>
  205. syntax: </H3>
  206. <em>BesselK</em>(&lt;order&gt;,&lt;argument&gt;)
  207. <P>
  208. <P>
  209. <P>
  210. <P> <H3>
  211. examples: </H3>
  212. <p><pre><tt>
  213. df(besselk(0,x),x);
  214. - besselk(1,x)
  215. </tt></pre><p>There is currently no numeric support for the operator <em>BesselK
  216. </em>.
  217. <P>
  218. <P>
  219. <P>
  220. <a name=r38_0458>
  221. <title>StruveH</title></a>
  222. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  223. E"></p>
  224. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  225. <b>STRUVEH</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  226. <P>
  227. The <em>StruveH</em> operator returns Struve's H function.
  228. <P>
  229. <P>
  230. <P> <H3>
  231. syntax: </H3>
  232. <em>StruveH</em>(&lt;order&gt;,&lt;argument&gt;)
  233. <P>
  234. <P>
  235. <P>
  236. <P> <H3>
  237. examples: </H3>
  238. <p><pre><tt>
  239. struveh(-3/2,x);
  240. - besselj(3/2,x) / i
  241. </tt></pre><p>
  242. <a name=r38_0459>
  243. <title>StruveL</title></a>
  244. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  245. E"></p>
  246. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  247. <b>STRUVEL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  248. <P>
  249. The <em>StruveL</em> operator returns the modified Struve L function .
  250. <P>
  251. <P>
  252. <P> <H3>
  253. syntax: </H3>
  254. <em>StruveL</em>(&lt;order&gt;,&lt;argument&gt;)
  255. <P>
  256. <P>
  257. <P>
  258. <P> <H3>
  259. examples: </H3>
  260. <p><pre><tt>
  261. struvel(-3/2,x);
  262. besseli(3/2,x)
  263. </tt></pre><p>
  264. <a name=r38_0460>
  265. <title>KummerM</title></a>
  266. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  267. E"></p>
  268. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  269. <b>KUMMERM</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  270. <P>
  271. <P>
  272. <P>
  273. The <em>KummerM</em> operator returns Kummer's M function.
  274. <P>
  275. <P>
  276. <P> <H3>
  277. syntax: </H3>
  278. <em>KummerM</em>(&lt;parameter&gt;,&lt;parameter&gt;,&lt;argument&gt;)
  279. <P>
  280. <P>
  281. <P>
  282. <P> <H3>
  283. examples: </H3>
  284. <p><pre><tt>
  285. kummerm(1,1,x);
  286. x
  287. e
  288. on rounded;
  289. kummerm(1,3,1.3);
  290. 1.62046942914
  291. </tt></pre><p>Kummer's M function is one of the Confluent Hypergeometric functio
  292. ns.
  293. For reference see the
  294. <a href=r38_0500.html#r38_0529>hypergeometric</a> operator.
  295. <P>
  296. <P>
  297. <P>
  298. <a name=r38_0461>
  299. <title>KummerU</title></a>
  300. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  301. E"></p>
  302. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  303. <b>KUMMERU</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  304. <P>
  305. <P>
  306. <P>
  307. The <em>KummerU</em> operator returns Kummer's U function.
  308. <P>
  309. <P>
  310. <P> <H3>
  311. syntax: </H3>
  312. <em>KummerU</em>(&lt;parameter&gt;,&lt;parameter&gt;,&lt;argument&gt;)
  313. <P>
  314. <P>
  315. <P>
  316. <P> <H3>
  317. examples: </H3>
  318. <p><pre><tt>
  319. df(kummeru(1,1,x),x)
  320. - kummeru(2,2,x)
  321. </tt></pre><p>Kummer's U function is one of the Confluent Hypergeometric functio
  322. ns.
  323. For reference see the
  324. <a href=r38_0500.html#r38_0529>hypergeometric</a> operator.
  325. <P>
  326. <P>
  327. <P>
  328. <a name=r38_0462>
  329. <title>WhittakerW</title></a>
  330. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  331. E"></p>
  332. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  333. <b>WHITTAKERW</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  334. <P>
  335. <P>
  336. <P>
  337. The <em>WhittakerW</em> operator returns Whittaker's W function.
  338. <P>
  339. <P>
  340. <P> <H3>
  341. syntax: </H3>
  342. <em>WhittakerW</em>(&lt;parameter&gt;,&lt;parameter&gt;,&lt;argument&gt;)
  343. <P>
  344. <P>
  345. <P>
  346. <P> <H3>
  347. examples: </H3>
  348. <p><pre><tt>
  349. WhittakerW(2,2,2);
  350. 1
  351. 4*sqrt(2)*kummeru(-,5,2)
  352. 2
  353. -------------------------
  354. e
  355. </tt></pre><p>Whittaker's W function is one of the Confluent Hypergeometric func
  356. tions.
  357. For reference see the
  358. <a href=r38_0500.html#r38_0529>hypergeometric</a> operator.
  359. <P>
  360. <P>
  361. <P>
  362. <a name=r38_0463>
  363. <title>Bessel Functions</title></a>
  364. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  365. E"></p>
  366. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  367. <b>Bessel Functions</b><menu>
  368. <li><a href=r38_0450.html#r38_0452>BESSELJ operator</a><P>
  369. <li><a href=r38_0450.html#r38_0453>BESSELY operator</a><P>
  370. <li><a href=r38_0450.html#r38_0454>HANKEL1 operator</a><P>
  371. <li><a href=r38_0450.html#r38_0455>HANKEL2 operator</a><P>
  372. <li><a href=r38_0450.html#r38_0456>BESSELI operator</a><P>
  373. <li><a href=r38_0450.html#r38_0457>BESSELK operator</a><P>
  374. <li><a href=r38_0450.html#r38_0458>StruveH operator</a><P>
  375. <li><a href=r38_0450.html#r38_0459>StruveL operator</a><P>
  376. <li><a href=r38_0450.html#r38_0460>KummerM operator</a><P>
  377. <li><a href=r38_0450.html#r38_0461>KummerU operator</a><P>
  378. <li><a href=r38_0450.html#r38_0462>WhittakerW operator</a><P>
  379. </menu>
  380. <a name=r38_0464>
  381. <title>Airy_Ai</title></a>
  382. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  383. E"></p>
  384. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  385. <b>AIRY_AI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  386. <P>
  387. The <em>Airy_Ai</em> operator returns the Airy Ai function for a given argument.
  388. <P>
  389. <P>
  390. <P> <H3>
  391. syntax: </H3>
  392. <em>Airy_Ai</em>(&lt;argument&gt;)
  393. <P>
  394. <P>
  395. <P>
  396. <P> <H3>
  397. examples: </H3>
  398. <p><pre><tt>
  399. on complex;
  400. on rounded;
  401. Airy_Ai(0);
  402. 0.355028053888
  403. Airy_Ai(3.45 + 17.97i);
  404. - 5.5561528511e+9 - 8.80397899932e+9*i
  405. </tt></pre><p>
  406. <a name=r38_0465>
  407. <title>Airy_Bi</title></a>
  408. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  409. E"></p>
  410. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  411. <b>AIRY_BI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  412. <P>
  413. The <em>Airy_Bi</em> operator returns the Airy Bi function for a given
  414. argument.
  415. <P>
  416. <P>
  417. <P> <H3>
  418. syntax: </H3>
  419. <em>Airy_Bi</em>(&lt;argument&gt;)
  420. <P>
  421. <P>
  422. <P>
  423. <P> <H3>
  424. examples: </H3>
  425. <p><pre><tt>
  426. Airy_Bi(0);
  427. 0.614926627446
  428. Airy_Bi(3.45 + 17.97i);
  429. 8.80397899932e+9 - 5.5561528511e+9*i
  430. </tt></pre><p>
  431. <a name=r38_0466>
  432. <title>Airy_Aiprime</title></a>
  433. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  434. E"></p>
  435. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  436. <b>AIRY_AIPRIME</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  437. <P>
  438. The <em>Airy_Aiprime</em> operator returns the Airy Aiprime function for a
  439. given argument.
  440. <P>
  441. <P>
  442. <P> <H3>
  443. syntax: </H3>
  444. <em>Airy_Aiprime</em>(&lt;argument&gt;)
  445. <P>
  446. <P>
  447. <P>
  448. <P> <H3>
  449. examples: </H3>
  450. <p><pre><tt>
  451. Airy_Aiprime(0);
  452. - 0.258819403793
  453. Airy_Aiprime(3.45+17.97i);
  454. - 3.83386421824e+19 + 2.16608828136e+19*i
  455. </tt></pre><p>
  456. <a name=r38_0467>
  457. <title>Airy_Biprime</title></a>
  458. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  459. E"></p>
  460. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  461. <b>AIRY_BIPRIME</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  462. <P>
  463. The <em>Airy_Biprime</em> operator returns the Airy Biprime function for a
  464. given argument.
  465. <P>
  466. <P>
  467. <P> <H3>
  468. syntax: </H3>
  469. <em>Airy_Biprime</em>(&lt;argument&gt;)
  470. <P>
  471. <P>
  472. <P>
  473. <P> <H3>
  474. examples: </H3>
  475. <p><pre><tt>
  476. Airy_Biprime(0);
  477. Airy_Biprime(3.45 + 17.97i);
  478. 3.84251916792e+19 - 2.18006297399e+19*i
  479. </tt></pre><p>
  480. <a name=r38_0468>
  481. <title>Airy Functions</title></a>
  482. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  483. E"></p>
  484. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  485. <b>Airy Functions</b><menu>
  486. <li><a href=r38_0450.html#r38_0464>Airy_Ai operator</a><P>
  487. <li><a href=r38_0450.html#r38_0465>Airy_Bi operator</a><P>
  488. <li><a href=r38_0450.html#r38_0466>Airy_Aiprime operator</a><P>
  489. <li><a href=r38_0450.html#r38_0467>Airy_Biprime operator</a><P>
  490. </menu>
  491. <a name=r38_0469>
  492. <title>JacobiSN</title></a>
  493. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  494. E"></p>
  495. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  496. <b>JACOBISN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  497. <P>
  498. The <em>Jacobisn</em> operator returns the Jacobi Elliptic function sn.
  499. <P>
  500. <P>
  501. <P> <H3>
  502. syntax: </H3>
  503. <em>Jacobisn</em>(&lt;expression&gt;,&lt;integer&gt;)
  504. <P>
  505. <P>
  506. <P>
  507. <P> <H3>
  508. examples: </H3>
  509. <p><pre><tt>
  510. Jacobisn(0.672, 0.36)
  511. 0.609519691792
  512. Jacobisn(1,0.9)
  513. 0.770085724907881
  514. </tt></pre><p>
  515. <a name=r38_0470>
  516. <title>JacobiCN</title></a>
  517. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  518. E"></p>
  519. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  520. <b>JACOBICN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  521. <P>
  522. The <em>Jacobicn</em> operator returns the Jacobi Elliptic function cn.
  523. <P>
  524. <P>
  525. <P> <H3>
  526. syntax: </H3>
  527. <em>Jacobicn</em>(&lt;expression&gt;,&lt;integer&gt;)
  528. <P>
  529. <P>
  530. <P>
  531. <P> <H3>
  532. examples: </H3>
  533. <p><pre><tt>
  534. Jacobicn(7.2, 0.6)
  535. 0.837288298482018
  536. Jacobicn(0.11, 19)
  537. 0.994403862690043 - 1.6219006985556e-16*i
  538. </tt></pre><p>
  539. <a name=r38_0471>
  540. <title>JacobiDN</title></a>
  541. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  542. E"></p>
  543. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  544. <b>JACOBIDN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  545. <P>
  546. The <em>Jacobidn</em> operator returns the Jacobi Elliptic function dn.
  547. <P>
  548. <P>
  549. <P> <H3>
  550. syntax: </H3>
  551. <em>Jacobidn</em>(&lt;expression&gt;,&lt;integer&gt;)
  552. <P>
  553. <P>
  554. <P>
  555. <P> <H3>
  556. examples: </H3>
  557. <p><pre><tt>
  558. Jacobidn(15, 0.683)
  559. 0.640574162024592
  560. Jacobidn(0,0)
  561. 1
  562. </tt></pre><p>
  563. <a name=r38_0472>
  564. <title>JacobiCD</title></a>
  565. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  566. E"></p>
  567. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  568. <b>JACOBICD</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  569. <P>
  570. The <em>Jacobicd</em> operator returns the Jacobi Elliptic function cd.
  571. <P>
  572. <P>
  573. <P> <H3>
  574. syntax: </H3>
  575. <em>Jacobicd</em>(&lt;expression&gt;,&lt;integer&gt;)
  576. <P>
  577. <P>
  578. <P>
  579. <P> <H3>
  580. examples: </H3>
  581. <p><pre><tt>
  582. Jacobicd(1, 0.34)
  583. 0.657683337805273
  584. Jacobicd(0.8,0.8)
  585. 0.925587311582301
  586. </tt></pre><p>
  587. <a name=r38_0473>
  588. <title>JacobiSD</title></a>
  589. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  590. E"></p>
  591. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  592. <b>JACOBISD</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  593. <P>
  594. The <em>Jacobisd</em> operator returns the Jacobi Elliptic function sd.
  595. <P>
  596. <P>
  597. <P> <H3>
  598. syntax: </H3>
  599. <em>Jacobisd</em>(&lt;expression&gt;,&lt;integer&gt;)
  600. <P>
  601. <P>
  602. <P>
  603. <P> <H3>
  604. examples: </H3>
  605. <p><pre><tt>
  606. Jacobisd(12, 0.4)
  607. 0.357189729437272
  608. Jacobisd(0.35,1)
  609. - 1.17713873203043
  610. </tt></pre><p>
  611. <a name=r38_0474>
  612. <title>JacobiND</title></a>
  613. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  614. E"></p>
  615. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  616. <b>JACOBIND</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  617. <P>
  618. The <em>Jacobind</em> operator returns the Jacobi Elliptic function nd.
  619. <P>
  620. <P>
  621. <P> <H3>
  622. syntax: </H3>
  623. <em>Jacobind</em>(&lt;expression&gt;,&lt;integer&gt;)
  624. <P>
  625. <P>
  626. <P>
  627. <P> <H3>
  628. examples: </H3>
  629. <p><pre><tt>
  630. Jacobind(0.2, 17)
  631. 1.46553203037507 + 0.0000000000334032759313703*i
  632. Jacobind(30, 0.001)
  633. 1.00048958438
  634. </tt></pre><p>
  635. <a name=r38_0475>
  636. <title>JacobiDC</title></a>
  637. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  638. E"></p>
  639. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  640. <b>JACOBIDC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  641. <P>
  642. The <em>Jacobidc</em> operator returns the Jacobi Elliptic function dc.
  643. <P>
  644. <P>
  645. <P> <H3>
  646. syntax: </H3>
  647. <em>Jacobidc</em>(&lt;expression&gt;,&lt;integer&gt;)
  648. <P>
  649. <P>
  650. <P>
  651. <P> <H3>
  652. examples: </H3>
  653. <p><pre><tt>
  654. Jacobidc(0.003,1)
  655. 1
  656. Jacobidc(2, 0.75)
  657. 6.43472885111
  658. </tt></pre><p>
  659. <a name=r38_0476>
  660. <title>JacobiNC</title></a>
  661. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  662. E"></p>
  663. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  664. <b>JACOBINC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  665. <P>
  666. The <em>Jacobinc</em> operator returns the Jacobi Elliptic function nc.
  667. <P>
  668. <P>
  669. <P> <H3>
  670. syntax: </H3>
  671. <em>Jacobinc</em>(&lt;expression&gt;,&lt;integer&gt;)
  672. <P>
  673. <P>
  674. <P>
  675. <P> <H3>
  676. examples: </H3>
  677. <p><pre><tt>
  678. Jacobinc(1,0)
  679. 1.85081571768093
  680. Jacobinc(56, 0.4387)
  681. 39.304842663512
  682. </tt></pre><p>
  683. <a name=r38_0477>
  684. <title>JacobiSC</title></a>
  685. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  686. E"></p>
  687. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  688. <b>JACOBISC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  689. <P>
  690. The <em>Jacobisc</em> operator returns the Jacobi Elliptic function sc.
  691. <P>
  692. <P>
  693. <P> <H3>
  694. syntax: </H3>
  695. <em>Jacobisc</em>(&lt;expression&gt;,&lt;integer&gt;)
  696. <P>
  697. <P>
  698. <P>
  699. <P> <H3>
  700. examples: </H3>
  701. <p><pre><tt>
  702. Jacobisc(9, 0.88)
  703. - 1.16417697982095
  704. Jacobisc(0.34, 7)
  705. 0.305851938390775 - 9.8768100944891e-12*i
  706. </tt></pre><p>
  707. <a name=r38_0478>
  708. <title>JacobiNS</title></a>
  709. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  710. E"></p>
  711. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  712. <b>JACOBINS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  713. <P>
  714. The <em>Jacobins</em> operator returns the Jacobi Elliptic function ns.
  715. <P>
  716. <P>
  717. <P> <H3>
  718. syntax: </H3>
  719. <em>Jacobins</em>(&lt;expression&gt;,&lt;integer&gt;)
  720. <P>
  721. <P>
  722. <P>
  723. <P> <H3>
  724. examples: </H3>
  725. <p><pre><tt>
  726. Jacobins(3, 0.9)
  727. 1.00945801599785
  728. Jacobins(0.887, 15)
  729. 0.683578280513975 - 0.85023411082469*i
  730. </tt></pre><p>
  731. <a name=r38_0479>
  732. <title>JacobiDS</title></a>
  733. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  734. E"></p>
  735. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  736. <b>JACOBIDS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  737. <P>
  738. The <em>Jacobisn</em> operator returns the Jacobi Elliptic function ds.
  739. <P>
  740. <P>
  741. <P> <H3>
  742. syntax: </H3>
  743. <em>Jacobids</em>(&lt;expression&gt;,&lt;integer&gt;)
  744. <P>
  745. <P>
  746. <P>
  747. <P> <H3>
  748. examples: </H3>
  749. <p><pre><tt>
  750. Jacobids(98,0.223)
  751. - 1.061253961477
  752. Jacobids(0.36,0.6)
  753. 2.76693172243692
  754. </tt></pre><p>
  755. <a name=r38_0480>
  756. <title>JacobiCS</title></a>
  757. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  758. E"></p>
  759. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  760. <b>JACOBICS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  761. <P>
  762. The <em>Jacobics</em> operator returns the Jacobi Elliptic function cs.
  763. <P>
  764. <P>
  765. <P> <H3>
  766. syntax: </H3>
  767. <em>Jacobics</em>(&lt;expression&gt;,&lt;integer&gt;)
  768. <P>
  769. <P>
  770. <P>
  771. <P> <H3>
  772. examples: </H3>
  773. <p><pre><tt>
  774. Jacobics(0, 0.767)
  775. infinity
  776. Jacobics(1.43, 0)
  777. 0.141734127352112
  778. </tt></pre><p>
  779. <a name=r38_0481>
  780. <title>JacobiAMPLITUDE</title></a>
  781. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  782. E"></p>
  783. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  784. <b>JACOBIAMPLITUDE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  785. <P>
  786. The <em>JacobiAmplitude</em> operator returns the amplitude of u.
  787. <P> <H3>
  788. syntax: </H3>
  789. <P>
  790. <P>
  791. <em>JacobiAmplitude</em>(&lt;expression&gt;,&lt;integer&gt;)
  792. <P>
  793. <P>
  794. <P>
  795. <P> <H3>
  796. examples: </H3>
  797. <p><pre><tt>
  798. JacobiAmplitude(7.239, 0.427)
  799. 0.0520978301448978
  800. JacobiAmplitude(0,0.1)
  801. 0
  802. </tt></pre><p>Amplitude u = asin(<em>Jacobisn(u,m)</em>)
  803. <P>
  804. <P>
  805. <P>
  806. <a name=r38_0482>
  807. <title>AGM_FUNCTION</title></a>
  808. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  809. E"></p>
  810. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  811. <b>AGM_FUNCTION</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  812. <P>
  813. The <em>AGM_function</em> operator returns a list of (N, AGM,
  814. list of aNtoa0, list of bNtob0, list of cNtoc0) where a0, b0 and c0
  815. are the initial values; N is the index number of the last term
  816. used to generate the AGM. AGM is the Arithmetic Geometric Mean.
  817. <P>
  818. <P>
  819. <P> <H3>
  820. syntax: </H3>
  821. <em>AGM_function</em>(&lt;integer&gt;,&lt;integer&gt;,&lt;integer&gt;)
  822. <P>
  823. <P>
  824. <P>
  825. <P> <H3>
  826. examples: </H3>
  827. <p><pre><tt>
  828. AGM_function(1,1,1)
  829. 1,1,1,1,1,1,0,1
  830. AGM_function(1, 0.1, 1.3)
  831. {6,
  832. 2.27985615996629,
  833. {2.27985615996629, 2.27985615996629,
  834. 2.2798561599706, 2.2798624278857,
  835. 2.28742283656583, 2.55, 1},
  836. {2.27985615996629, 2.27985615996629,
  837. 2.27985615996198, 2.2798498920555,
  838. 2.27230201920557, 2.02484567313166, 4.1},
  839. {0, 4.30803136219904e-12, 0.0000062679151007581,
  840. 0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}
  841. </tt></pre><p>The other Jacobi functions use this function with initial values
  842. a0=1, b0=sqrt(1-m), c0=sqrt(m).
  843. <P>
  844. <P>
  845. <P>
  846. <a name=r38_0483>
  847. <title>LANDENTRANS</title></a>
  848. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  849. E"></p>
  850. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  851. <b>LANDENTRANS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  852. <P>
  853. The <em>landentrans</em> operator generates the descending landen
  854. transformation of the given imput values, returning a list of these
  855. values; initial to final in each case.
  856. <P> <H3>
  857. syntax: </H3>
  858. <P>
  859. <P>
  860. <em>landentrans</em>(&lt;expression&gt;,&lt;integer&gt;)
  861. <P>
  862. <P>
  863. <P>
  864. <P> <H3>
  865. examples: </H3>
  866. <p><pre><tt>
  867. landentrans(0,0.1)
  868. {{0,0,0,0,0},{0.1,0.0025041751943776,
  869. 0.00000156772498954046,6.1444078 9914461e-13,0}}
  870. </tt></pre><p>The first list ascends in value, and the second descends in value.
  871. <P>
  872. <P>
  873. <P>
  874. <a name=r38_0484>
  875. <title>EllipticF</title></a>
  876. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  877. E"></p>
  878. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  879. <b>ELLIPTICF</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  880. <P>
  881. The <em>EllipticF</em> operator returns the Elliptic Integral of the
  882. First Kind.
  883. <P> <H3>
  884. syntax: </H3>
  885. <P>
  886. <P>
  887. <em>EllitpicF</em>(&lt;expression&gt;,&lt;integer&gt;)
  888. <P>
  889. <P>
  890. <P>
  891. <P> <H3>
  892. examples: </H3>
  893. <p><pre><tt>
  894. EllipticF(0.3, 8.222)
  895. 0.3
  896. EllipticF(7.396, 0.1)
  897. 7.58123216114307
  898. </tt></pre><p>The Complete Elliptic Integral of the First Kind can be found by
  899. putting the first argument to pi/2 or by using <em>EllipticK</em>
  900. and the second argument.
  901. <P>
  902. <P>
  903. <P>
  904. <a name=r38_0485>
  905. <title>EllipticK</title></a>
  906. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  907. E"></p>
  908. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  909. <b>ELLIPTICK</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  910. <P>
  911. The <em>EllipticK</em> operator returns the Elliptic value K.
  912. <P>
  913. <P>
  914. <P> <H3>
  915. syntax: </H3>
  916. <em>EllipticK</em>(&lt;integer&gt;)
  917. <P>
  918. <P>
  919. <P>
  920. <P> <H3>
  921. examples: </H3>
  922. <p><pre><tt>
  923. EllipticK(0.2)
  924. 1.65962359861053
  925. EllipticK(4.3)
  926. 0.808442364282734 - 1.05562492399206*i
  927. EllipticK(0.000481)
  928. 1.57098526617635
  929. </tt></pre><p>The <em>EllipticK</em> function is the Complete Elliptic Integral
  930. of
  931. the First Kind.
  932. <P>
  933. <P>
  934. <P>
  935. <a name=r38_0486>
  936. <title>EllipticKprime</title></a>
  937. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  938. E"></p>
  939. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  940. <b>ELLIPTICKPRIME</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  941. <P>
  942. The <em>EllipticK'</em> operator returns the Elliptic value K(m).
  943. <P>
  944. <P>
  945. <P> <H3>
  946. syntax: </H3>
  947. <em>EllipticKprime</em>(&lt;integer&gt;)
  948. <P>
  949. <P>
  950. <P>
  951. <P> <H3>
  952. examples: </H3>
  953. <p><pre><tt>
  954. EllipticKprime(0.2)
  955. 2.25720532682085
  956. EllipticKprime(4.3)
  957. 1.05562492399206
  958. EllipticKprime(0.000481)
  959. 5.206621921966
  960. </tt></pre><p>The <em>EllipticKprime</em> function is the Complete Elliptic Inte
  961. gral of
  962. the First Kind of (1-m).
  963. <P>
  964. <P>
  965. <P>
  966. <a name=r38_0487>
  967. <title>EllipticE</title></a>
  968. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  969. E"></p>
  970. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  971. <b>ELLIPTICE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  972. <P>
  973. The <em>EllipticE</em> operator used with two arguments
  974. returns the Elliptic Integral of the Second Kind.
  975. <P> <H3>
  976. syntax: </H3>
  977. <P>
  978. <P>
  979. <em>EllipticE</em>(&lt;expression&gt;,&lt;integer&gt;)
  980. <P>
  981. <P>
  982. <P>
  983. <P> <H3>
  984. examples: </H3>
  985. <p><pre><tt>
  986. EllipticE(1.2,0.22)
  987. 1.15094019180949
  988. EllipticE(0,4.35)
  989. 0
  990. EllipticE(9,0.00719)
  991. 8.98312465929145
  992. </tt></pre><p>The Complete Elliptic Integral of the Second Kind can be obtained
  993. by
  994. using just the second argument, or by using pi/2 as the first argument.
  995. <P>
  996. <P>
  997. <P>
  998. The <em>EllipticE</em> operator used with one argument
  999. returns the Elliptic value E.
  1000. <P> <H3>
  1001. syntax: </H3>
  1002. <P>
  1003. <P>
  1004. <em>EllipticE</em>(&lt;integer&gt;)
  1005. <P>
  1006. <P>
  1007. <P>
  1008. <P> <H3>
  1009. examples: </H3>
  1010. <p><pre><tt>
  1011. EllipticE(0.22)
  1012. 1.48046637439519
  1013. EllipticE(pi/2, 0.22)
  1014. 1.48046637439519
  1015. </tt></pre><p>
  1016. <a name=r38_0488>
  1017. <title>EllipticTHETA</title></a>
  1018. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1019. E"></p>
  1020. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1021. <b>ELLIPTICTHETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1022. <P>
  1023. The <em>EllipticTheta</em> operator returns one of the four Theta
  1024. functions. It cannot except any number other than 1,2,3 or 4 as
  1025. its first argument.
  1026. <P>
  1027. <P>
  1028. <P> <H3>
  1029. syntax: </H3>
  1030. <em>EllipticTheta</em>(&lt;integer&gt;,&lt;expression&gt;,&lt;integer&gt;)
  1031. <P>
  1032. <P>
  1033. <P>
  1034. <P> <H3>
  1035. examples: </H3>
  1036. <p><pre><tt>
  1037. EllipticTheta(1, 1.4, 0.72)
  1038. 0.91634775373
  1039. EllipticTheta(2, 3.9, 6.1 )
  1040. -48.0202736969 + 20.9881034377 i
  1041. EllipticTheta(3, 0.67, 0.2)
  1042. 1.0083077448
  1043. EllipticTheta(4, 8, 0.75)
  1044. 0.894963369304
  1045. EllipticTheta(5, 1, 0.1)
  1046. ***** In EllipticTheta(a,u,m); a = 1,2,3 or 4.
  1047. </tt></pre><p>Theta functions are important because every one of the Jacobian
  1048. Elliptic functions can be expressed as the ratio of two theta functions.
  1049. <P>
  1050. <P>
  1051. <P>
  1052. <a name=r38_0489>
  1053. <title>JacobiZETA</title></a>
  1054. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1055. E"></p>
  1056. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1057. <b>JACOBIZETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1058. <P>
  1059. The <em>JacobiZeta</em> operator returns the Jacobian function Zeta.
  1060. <P>
  1061. <P>
  1062. <P> <H3>
  1063. syntax: </H3>
  1064. <em>JacobiZeta</em>(&lt;expression&gt;,&lt;integer&gt;)
  1065. <P>
  1066. <P>
  1067. <P>
  1068. <P> <H3>
  1069. examples: </H3>
  1070. <p><pre><tt>
  1071. JacobiZeta(3.2, 0.8)
  1072. - 0.254536403439
  1073. JacobiZeta(0.2, 1.6)
  1074. 0.171766095970451 - 0.0717028569800147*i
  1075. </tt></pre><p>The Jacobian function Zeta is related to the Jacobian function The
  1076. ta.
  1077. But it is significantly different from Riemann's Zeta Function
  1078. <a href=r38_0450.html#r38_0450>Zeta</a>.
  1079. <P>
  1080. <P>
  1081. <P>
  1082. <a name=r38_0490>
  1083. <title>Jacobi's Elliptic Functions and Elliptic Integrals</title></a>
  1084. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1085. E"></p>
  1086. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1087. <b>Jacobi's Elliptic Functions and Elliptic Integrals</b><menu>
  1088. <li><a href=r38_0450.html#r38_0469>JacobiSN operator</a><P>
  1089. <li><a href=r38_0450.html#r38_0470>JacobiCN operator</a><P>
  1090. <li><a href=r38_0450.html#r38_0471>JacobiDN operator</a><P>
  1091. <li><a href=r38_0450.html#r38_0472>JacobiCD operator</a><P>
  1092. <li><a href=r38_0450.html#r38_0473>JacobiSD operator</a><P>
  1093. <li><a href=r38_0450.html#r38_0474>JacobiND operator</a><P>
  1094. <li><a href=r38_0450.html#r38_0475>JacobiDC operator</a><P>
  1095. <li><a href=r38_0450.html#r38_0476>JacobiNC operator</a><P>
  1096. <li><a href=r38_0450.html#r38_0477>JacobiSC operator</a><P>
  1097. <li><a href=r38_0450.html#r38_0478>JacobiNS operator</a><P>
  1098. <li><a href=r38_0450.html#r38_0479>JacobiDS operator</a><P>
  1099. <li><a href=r38_0450.html#r38_0480>JacobiCS operator</a><P>
  1100. <li><a href=r38_0450.html#r38_0481>JacobiAMPLITUDE operator</a><P>
  1101. <li><a href=r38_0450.html#r38_0482>AGM_FUNCTION operator</a><P>
  1102. <li><a href=r38_0450.html#r38_0483>LANDENTRANS operator</a><P>
  1103. <li><a href=r38_0450.html#r38_0484>EllipticF operator</a><P>
  1104. <li><a href=r38_0450.html#r38_0485>EllipticK operator</a><P>
  1105. <li><a href=r38_0450.html#r38_0486>EllipticKprime operator</a><P>
  1106. <li><a href=r38_0450.html#r38_0487>EllipticE operator</a><P>
  1107. <li><a href=r38_0450.html#r38_0488>EllipticTHETA operator</a><P>
  1108. <li><a href=r38_0450.html#r38_0489>JacobiZETA operator</a><P>
  1109. </menu>
  1110. <a name=r38_0491>
  1111. <title>POCHHAMMER</title></a>
  1112. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1113. E"></p>
  1114. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1115. <b>POCHHAMMER</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1116. <P>
  1117. <P>
  1118. <P>
  1119. The <em>Pochhammer</em> operator implements the Pochhammer notation
  1120. (shifted factorial).
  1121. <P>
  1122. <P>
  1123. <P> <H3>
  1124. syntax: </H3>
  1125. <em>Pochhammer</em>(&lt;expression&gt;,&lt;expression&gt;)
  1126. <P>
  1127. <P>
  1128. <P>
  1129. <P> <H3>
  1130. examples: </H3>
  1131. <p><pre><tt>
  1132. pochhammer(17,4);
  1133. 116280
  1134. pochhammer(1/2,z);
  1135. factorial(2*z)
  1136. --------------------
  1137. 2*z
  1138. (2 *factorial(z))
  1139. </tt></pre><p>A number of complex rules for <em>Pochhammer</em> are inactive, be
  1140. cause they
  1141. cause a huge system load in algebraic mode. If one wants to use more rules
  1142. for the simplification of Pochhammer's notation, one can do:
  1143. <P>
  1144. <P>
  1145. let special!*pochhammer!*rules;
  1146. <P>
  1147. <P>
  1148. <P>
  1149. <P>
  1150. <a name=r38_0492>
  1151. <title>GAMMA</title></a>
  1152. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1153. E"></p>
  1154. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1155. <b>GAMMA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1156. <P>
  1157. The <em>Gamma</em> operator returns the Gamma function.
  1158. <P>
  1159. <P>
  1160. <P> <H3>
  1161. syntax: </H3>
  1162. <em>Gamma</em>(&lt;expression&gt;)
  1163. <P>
  1164. <P>
  1165. <P>
  1166. <P>
  1167. <P> <H3>
  1168. examples: </H3>
  1169. <p><pre><tt>
  1170. gamma(10);
  1171. 362880
  1172. gamma(1/2);
  1173. sqrt(pi)
  1174. </tt></pre><p>
  1175. <a name=r38_0493>
  1176. <title>BETA</title></a>
  1177. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1178. E"></p>
  1179. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1180. <b>BETA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1181. <P>
  1182. The <em>Beta</em> operator returns the Beta function defined by
  1183. <P>
  1184. <P>
  1185. Beta (z,w) := defint(t**(z-1)* (1 - t)**(w-1),t,0,1) .
  1186. <P>
  1187. <P>
  1188. <P> <H3>
  1189. syntax: </H3>
  1190. <em>Beta</em>(&lt;expression&gt;,&lt;expression&gt;)
  1191. <P>
  1192. <P>
  1193. <P>
  1194. <P>
  1195. <P> <H3>
  1196. examples: </H3>
  1197. <p><pre><tt>
  1198. Beta(2,2);
  1199. 1 / 6
  1200. Beta(x,y);
  1201. gamma(x)*gamma(y) / gamma(x + y)
  1202. </tt></pre><p>The operator <em>Beta</em> is simplified towards the
  1203. <a href=r38_0450.html#r38_0492>GAMMA</a> operator.
  1204. <P>
  1205. <P>
  1206. <P>
  1207. <a name=r38_0494>
  1208. <title>PSI</title></a>
  1209. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1210. E"></p>
  1211. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1212. <b>PSI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1213. <P>
  1214. <P>
  1215. <P>
  1216. The <em>Psi</em> operator returns the Psi (or DiGamma) function.
  1217. <P>
  1218. <P>
  1219. Psi(x) := df(Gamma(z),z)/ Gamma (z)
  1220. <P>
  1221. <P>
  1222. <P> <H3>
  1223. syntax: </H3>
  1224. <em>Gamma</em>(&lt;expression&gt;)
  1225. <P>
  1226. <P>
  1227. <P>
  1228. <P>
  1229. <P> <H3>
  1230. examples: </H3>
  1231. <p><pre><tt>
  1232. Psi(3);
  1233. (2*log(2) + psi(1/2) + psi(1) + 3)/2
  1234. on rounded;
  1235. - Psi(1);
  1236. 0.577215664902
  1237. </tt></pre><p>Euler's constant can be found as - Psi(1).
  1238. <P>
  1239. <P>
  1240. <P>
  1241. <a name=r38_0495>
  1242. <title>POLYGAMMA</title></a>
  1243. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1244. E"></p>
  1245. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1246. <b>POLYGAMMA</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1247. <P>
  1248. The <em>Polygamma</em> operator returns the Polygamma function.
  1249. <P>
  1250. <P>
  1251. Polygamma(n,x) := df(Psi(z),z,n);
  1252. <P>
  1253. <P>
  1254. <P> <H3>
  1255. syntax: </H3>
  1256. <em>Polygamma</em>(&lt;integer&gt;,&lt;expression&gt;)
  1257. <P>
  1258. <P>
  1259. <P>
  1260. <P> <H3>
  1261. examples: </H3>
  1262. <p><pre><tt>
  1263. Polygamma(1,2);
  1264. 2
  1265. (pi - 6) / 6
  1266. on rounded;
  1267. Polygamma(1,2.35);
  1268. 0.52849689109
  1269. </tt></pre><p>The Polygamma function is used for simplification of the
  1270. <a href=r38_0450.html#r38_0450>ZETA</a>
  1271. function for some arguments.
  1272. <P>
  1273. <P>
  1274. <P>
  1275. <a name=r38_0496>
  1276. <title>Gamma and Related Functions</title></a>
  1277. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1278. E"></p>
  1279. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1280. <b>Gamma and Related Functions</b><menu>
  1281. <li><a href=r38_0450.html#r38_0491>POCHHAMMER operator</a><P>
  1282. <li><a href=r38_0450.html#r38_0492>GAMMA operator</a><P>
  1283. <li><a href=r38_0450.html#r38_0493>BETA operator</a><P>
  1284. <li><a href=r38_0450.html#r38_0494>PSI operator</a><P>
  1285. <li><a href=r38_0450.html#r38_0495>POLYGAMMA operator</a><P>
  1286. </menu>
  1287. <a name=r38_0497>
  1288. <title>DILOG_extended</title></a>
  1289. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1290. E"></p>
  1291. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1292. <b>DILOG EXTENDED</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1293. <P>
  1294. <P>
  1295. <P>
  1296. The package <em>specfn</em> supplies an extended support for the
  1297. <a href=r38_0050.html#r38_0078>dilog</a> operator which implements the <em>dilog
  1298. arithm function</em>.
  1299. <P>
  1300. <P>
  1301. dilog(x) := - defint(log(t)/(t - 1),t,1,x);
  1302. <P>
  1303. <P>
  1304. <P> <H3>
  1305. syntax: </H3>
  1306. <em>Dilog</em>(&lt;order&gt;,&lt;expression&gt;)
  1307. <P>
  1308. <P>
  1309. <P>
  1310. <P> <H3>
  1311. examples: </H3>
  1312. <p><pre><tt>
  1313. defint(log(t)/(t - 1),t,1,x);
  1314. - dilog (x)
  1315. dilog 2;
  1316. 2
  1317. - pi /12
  1318. on rounded;
  1319. Dilog 20;
  1320. - 5.92783972438
  1321. </tt></pre><p>The operator <em>Dilog</em> is sometimes called Spence's Integral
  1322. for n = 2.
  1323. <P>
  1324. <P>
  1325. <P>
  1326. <a name=r38_0498>
  1327. <title>Lambert_W_function</title></a>
  1328. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1329. E"></p>
  1330. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1331. <b>LAMBERT\_W FUNCTION</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1332. <P>
  1333. Lambert's W function is the inverse of the function w * e**w.
  1334. It is used in the
  1335. <a href=r38_0150.html#r38_0179>solve</a> package for equations containing
  1336. exponentials and logarithms.
  1337. <P>
  1338. <P>
  1339. <P> <H3>
  1340. syntax: </H3>
  1341. <em>Lambert_W</em>(&lt;z&gt;)
  1342. <P>
  1343. <P>
  1344. <P>
  1345. <P> <H3>
  1346. examples: </H3>
  1347. <p><pre><tt>
  1348. Lambert_W(-1/e);
  1349. -1
  1350. solve(w + log(w),w);
  1351. w=lambert_w(1)
  1352. on rounded;
  1353. Lambert_W(-0.05);
  1354. - 0.0527059835515
  1355. </tt></pre><p>The current implementation will compute the principal branch in
  1356. rounded mode only.
  1357. <P>
  1358. <P>
  1359. <P>
  1360. <a name=r38_0499>
  1361. <title>Miscellaneous Functions</title></a>
  1362. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1363. E"></p>
  1364. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1365. <b>Miscellaneous Functions</b><menu>
  1366. <li><a href=r38_0450.html#r38_0497>DILOG extended operator</a><P>
  1367. <li><a href=r38_0450.html#r38_0498>Lambert\_W function operator</a><P>
  1368. </menu>