susy2.tst 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551
  1. on list;
  2. on errcont;
  3. % 1.) Example of ordering of objects such as fer,bos,axp;
  4. axp(bos(f,0,0))*bos(g,3,1)*fer(k,1,0);
  5. %fer(k,1,0)*bos(g,3,1)*axp(bos(f,0,0));
  6. % 2.) Example of ordering of fer and fer objects
  7. fer(f,1,2)*fer(f,1,2);
  8. % 0
  9. fer(f,1,2)*fer(g,2,3);
  10. % -fer(g,2,3)*fer(f,1,2);
  11. fer(f,1,2)*fer(f,1,3);
  12. % - fer(f,1,3)*fer(f,1,2);
  13. fer(f,1,2)*fer(f,2,2);
  14. % - fer(f,2,2)*fer(f,1,2);
  15. % 3.) Example of ordering of bos and bos objects;
  16. bos(f,3,0)*bos(g,0,4);
  17. %bos(g,0,4)*bos(f,3,0);
  18. bos(f,3,0)*bos(f,0,0);
  19. %bos(f,3,0)*bos(f,0,0);
  20. bos(f,3,2)*bos(f,3,5);
  21. %bos(f,3,5)*bos(f,3,2);
  22. % 4.) ordering of inverse superfunctions;
  23. % last index in bos objects denotes powers;
  24. bos(f,0,3)*bos(k,0,2)*bos(zz,0,3,-1)*bos(k,0,2,-1);
  25. %bos(zz,0,3,-1)*bos(f,0,3);
  26. bos(c,0,3)*bos(b,0,2)*bos(a,0,3,-1)*bos(b,0,2,-1);
  27. %bos(c,0,3)*bos(a,0,3,-1);
  28. % 5.) Demostration of inverse rule;
  29. let inverse;
  30. bos(f,0,3)**3*bos(k,3,1)**40*bos(f,0,3,-2);
  31. %bos(k,3,1,40)*bos(f,0,3,1);
  32. clearrules inverse;
  33. % 6.) Demonstration of (susy) derivative operators;
  34. % Up to now we did not decided on the chirality assumption
  35. % so let us check first the tradicional algebra os susy derivative;
  36. let trad;
  37. %first susy derivative
  38. der(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0));
  39. fer(g,2,1)*bos(f,0,2,-2)*axp(fer(k,1,2)*fer(h,2,1))*del(1);
  40. sub(del=der,ws);
  41. %second susy derivative
  42. der(2)*fer(g,2,3)*bos(kk,0,3)*axp(bos(f,3,0));
  43. fer(r,2,1)*bos(kk,3,4,-4)*axp(fer(f,1,2)*fer(g,2,1))*del(2);
  44. sub(del=der,ws);
  45. %usual derivative;
  46. d(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0));
  47. fer(g,2,1)*bos(f,0,2,-2)*axp(fer(h,1,2)*fer(k,2,1))*d(2);
  48. sub(d(2)=d(1),ws);
  49. % 7.) the value of action of (susy) derivative;
  50. xxx:=fer(f,1,2)*bos(k,0,2,-2)*axp(fer(h,2,0)*fer(aa,1,3));
  51. yyy:=fer(g,2,3)*bos(kk,3,1,-3)*axp(bos(f,0,2,-3));
  52. %first susy derivative
  53. pr(1,xxx);
  54. pr(1,yyy);
  55. %second susy2 derivative;
  56. pr(2,xxx);
  57. pr(2,yyy);
  58. % third susy2 derivative;
  59. pr(3,xxx);
  60. pr(3,yyy);
  61. clearrules trad;
  62. let chiral;
  63. pr(3,xxx);
  64. clearrules chiral;
  65. let chiral1;
  66. pr(3,xxx);
  67. clearrules chiral1;
  68. let trad;
  69. % usual derivative
  70. pg(1,xxx);
  71. pg(3,yyy);
  72. clear xxx,yyy;
  73. % 8.)
  74. % And now let us change traditional algebra on the chiral algebra;
  75. clearrules trad;
  76. let chiral;
  77. % And now we compute the same derivative but in the chiral
  78. % representation;
  79. %first susy derivative
  80. der(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0));
  81. fer(g,2,1)*bos(f,0,2,-2)*axp(fer(k,1,2)*fer(h,2,1))*del(1);
  82. sub(del=der,ws);
  83. %second susy derivative
  84. der(2)*fer(g,2,3)*bos(kk,0,3)*axp(bos(f,3,0));
  85. fer(r,2,1)*bos(kk,3,4,-4)*axp(fer(f,1,2)*fer(g,2,1))*del(2);
  86. sub(del=der,ws);
  87. ;
  88. % 9.) the value of action of (susy) derivative;
  89. xxx:=fer(f,1,2)*bos(k,0,2,-2)*axp(fer(h,2,0)*fer(aa,1,3));
  90. yyy:=fer(g,2,3)*bos(kk,3,1,-3)*axp(bos(f,0,2,-3));
  91. %first susy derivative
  92. pr(1,xxx);
  93. pr(1,yyy);
  94. %second susy2 derivative;
  95. pr(2,xxx);
  96. pr(2,yyy);
  97. clear xxx,yyy;
  98. % We return back to the traditional algebra;
  99. clearrules chiral;
  100. let trad;
  101. % 10.) The components of super-objects;
  102. xxx:=fer(f,2,3)*bos(g,3,2,2);
  103. % all components;
  104. fpart(xxx);
  105. %bosonic sector;
  106. bpart(xxx);
  107. %the given component
  108. bf_part(xxx,0);
  109. %the given component in the bosonic sector;
  110. b_part(xxx,0);
  111. b_part(xxx,1);
  112. clear zzz;
  113. clearrules trad;
  114. let chiral;
  115. zzz:=bos(f,3,1,-1)*bos(g,0,1,2);
  116. b_part(zzz,0);
  117. b_part(zzz,3);
  118. clearrules chiral;
  119. let chiral1;
  120. b_part(zzz,0);
  121. b_part(zzz,3);
  122. clearrules chiral1;
  123. let trad;
  124. %11 matrix represenattion of operators;
  125. lax:=der(1)*der(2)+bos(u,0,0);
  126. macierz(lax,b,b);
  127. macierz(lax,f,b);
  128. macierz(lax,b,f);
  129. macierz(lax,f,f);
  130. % 12.) Demonstration of chirality properties;
  131. clearrules trad;
  132. let chiral;
  133. b_chiral:={f0};
  134. b_antychiral:={f1};
  135. f_chiral:={f2};
  136. f_antychiral:={f3};
  137. for k:=0:3 do write fer(f0,k,0);
  138. for k:=0:3 do write fer(f1,k,0);
  139. for k:=0:3 do write fer(f2,k,0);
  140. for k:=0:3 do write fer(f3,k,0);
  141. for k:=0:3 do write bos(f1,k,0);
  142. for k:=0:3 do write bos(f2,k,0);
  143. for k:=0:3 do write bos(f2,k,0);
  144. for k:=0:3 do write bos(f3,k,0);
  145. % 13.) Integrations;
  146. d(-1)*xxx;
  147. %we have to declare ww;
  148. ww:=2;
  149. d(-1)*xxx;
  150. xxx*d(-2);
  151. d(-3)*xxx;
  152. ww:=4;
  153. d(-1)**5:=0;d(-2)**5:=0;
  154. d(-1)*yyy;
  155. yyy*d(-2);
  156. clear d(-1)**5,d(-2)**5;
  157. on list;
  158. % 14.) The accelerations of integrations;
  159. clear ww;
  160. ww:=3;
  161. let drr;
  162. let cutoff;
  163. cut:=4;
  164. d(-1)*xxx;
  165. d(-1)**2*yyy;
  166. clear ww,cut;
  167. ww:=4;
  168. cut:=5;
  169. d(-1)**3*yyy;
  170. d(-1)*xxx;
  171. clearrules cutoff;clearrules drr;
  172. clear cut,ww;
  173. % it is possible to use directly accelerated integrations oprators dr;
  174. ww:=4;
  175. dr(-2)*fer(f,1,2)*bos(kk,0,2);
  176. on time;
  177. showtime;
  178. dr(-3)*bos(g,3,1)*bos(ff,3,2);
  179. showtime;
  180. %if you try usual integration
  181. d(-1)**3*bos(g,3,1)*bos(ff,3,2);
  182. showtime;
  183. % then the time - diffrences is evident. In this example d(-1)
  184. % integration is 10 times slower then dr integrations.
  185. off time;
  186. let cutoff;
  187. cut:=5;
  188. dr(-2)*fer(f,1,2)*bos(aa,0,1);
  189. dr(-3)*bos(g,3,1)*bos(bb,0,3);
  190. clear ww,cut;
  191. ww:=6;
  192. cut:=7;
  193. dr(-3)*fer(k,2,3)*bos(h,0,2);
  194. dr(-4)*bos(h,0,3)*bos(k,0,2);
  195. clear ww,cut;
  196. clearrules cutoff;
  197. % 15.) The combinations
  198. %the combinations of dim 7 constructed from fields of
  199. % the 2 ,3 dimensions, free parameters are numerated by "a";
  200. w_comb({{f,2,b},{g,3,b}},7,a,b);
  201. w_comb({{f,2,f},{g,3,f}},4,s,f);
  202. % and now compute the last example but withouth the (susy)divergence
  203. %terms;
  204. fcomb({{f,2,b},{g,3,b}},5,c,b);
  205. fcomb({{f,1,f}},4,r,f);
  206. % 16.) The element of pseudo - susy -differential algebra;
  207. pse_ele(2,{{f,2,b}},c);
  208. pse_ele(3,{{f,2,b}},c);
  209. pse_ele(4,{{f,2,b}},c);
  210. pse_ele(3,{{f,1,b},{g,2,b}},r);
  211. % The components of the elements of pseudo - susy - differential algebra;
  212. xxx:=pse_ele(2,{{f,1,b},{g,2,b}},r);
  213. for k:=0:3 do write s_part(xxx,k);
  214. for k:=0:2 do write d_part(xxx,k);
  215. for k:=0:2 do for l:=0:3 do write sd_part(xxx,l,k);
  216. clear xxx;
  217. % 17.) Projection onto invariant subspace;
  218. xxx:=
  219. w_comb({{f,1,b}},2,a,b)*d(1)+
  220. w_comb({{f,1,b}},3,b,b)*der(1)*der(2)+
  221. w_comb({{f,1,b}},5/2,c,b)*der(1)+
  222. w_comb({{f,1,b}},3,ee,b)*d(1)^2+
  223. w_comb({{f,1,b}},7/2,fe,b)*d(1)*der(2)+
  224. w_comb({{f,1,b}},3,g,b)*der(1)*der(2)*d(1);
  225. for k:=0:2 do write rzut(xxx,k);
  226. clear xxx;
  227. % 18.) Test for the adjoint operators;
  228. cp(der(1));
  229. cp(der(1)*der(2));
  230. clearrules trad;
  231. let chiral1;
  232. cp(der(3));
  233. cp(der(1)*d(1));
  234. clearrules chiral1;
  235. let trad;
  236. cp(d(1));
  237. cp(d(2));
  238. as:=fer(f,1,0)*d(-3)*fer(g,2,0)+fer(h,1,2)*d(-3)*fer(kk,2,1);
  239. cp(as);
  240. cp(as*as);
  241. as:=fer(f,1,0);
  242. cp(as);
  243. cp(ws);
  244. clear as;
  245. as:=bos(f,0,0);
  246. as1:=as*der(1);
  247. cp(as1);
  248. cp(ws);
  249. cp(as1)+der(1)*as;
  250. as2:=as*der(1)*der(2);
  251. cp(as2);
  252. cp(ws);
  253. cp(as2) - der(1)*der(2)*as;
  254. clear as;
  255. as:=mat((fer(f,1,0)*der(1),bos(g,0,0)*d(-3)*bos(h,0,0)),
  256. (fer(h,2,1),fer(h,1,2)*d(-3)*fer(k,2,3)));
  257. cp(as);
  258. clear as;
  259. % 19.) Analog of coeff
  260. xxx:=pse_ele(2,{{f,1,b}},a);
  261. yyy:=lyst(xxx);
  262. zzz:=lyst1(xxx);
  263. yyy:=lyst2(xxx);
  264. clear xxx,yyy,zzz;
  265. % 20.) Simplifications;
  266. % we would like to compute third generalizations of the SUSY KdV
  267. % equation
  268. % example from Z.Popowicz Phys.Lett.A.174 (1993) p.87
  269. lax:=d(1)+d(-3)*der(1)*der(2)*bos(u,0,0);
  270. lb2:=lax^2;
  271. la2:=chan(lb2);
  272. lb3:=lax*la2;
  273. la3:=chan(lb3);
  274. lax3:=rzut(la3,1);
  275. comm:=lax*lax3 - lax3*lax;
  276. com:=chan(comm);
  277. result:=sub(der=del,com);
  278. %the equation is
  279. equ:=sub(del(1)=1,del(2)=1,d(-3)=1,result);
  280. clear lax,lb2,la2,lb3,la3,lax3,comm,com,result;
  281. % we now compute the same but starting from
  282. % different realizations of susy algebra
  283. %
  284. clearrules trad;
  285. let chiral1;
  286. lax:=d(1)+d(-3)*del(3)*bos(u,0,0);
  287. la2:=chan(lax^2);
  288. la3:=rzut(chan(lax*la2),0);
  289. com:=chan(lax*la3-la3*lax);
  290. equ_chiral1:=sub(d(-3)=1,del(3)=1,com);
  291. clear lax,lb2,la2,lb3,la3,lax3,lax,comm,com,result;
  292. clearrules chiral1;
  293. let trad;
  294. % 21.) Conservation laws;
  295. % we would like to check the conservations laws for our third
  296. %generalization of susy kdv equation;
  297. %
  298. ham:=fcomb({{u,1,b}},3,a,b);
  299. conserv:=dot_ham({{u,equ}},ham);
  300. % we check now on susy-divergence behaviour;
  301. %
  302. az:=war(conserv,u);
  303. solve(az);
  304. clear equ,ha,conserv,az;
  305. % 22.) The residue of Lax operator
  306. % we would like to find conservation laws for Lax susy KdV
  307. % equation considered in the previous example
  308. %
  309. lax:=d(1)-d(-3)*del(1)*der(2)*bos(u,0,0);
  310. lb2:=lax^2;
  311. la2:=chan(lb2);
  312. lb4:=la2^2;
  313. kxk^3:=0;
  314. la4:=chan(lb4);
  315. lc4:=sub(kxk=1,qq=-3,sub(d(-3)=kxk*d(qq),la4));
  316. lb5:=lax*lc4;
  317. lc5:=s_part(lb5,3);
  318. la5:=lc5-sub(d(-3)=0,lc5);
  319. ld5:=chan(la5);
  320. konserv:=sub(d(-3)=1,d_part(ld5,-1));
  321. clear lax,lb2,la2,lb4,kxk,la4,lc4,lb5,lc5,la5,konserv;
  322. %22.) The N=2 SuSy Boussinesq equation
  323. % example from Z.Popowicz Phys.LettB.319 (1993) 478-484
  324. clearrules trad;
  325. let chiral;
  326. lax:=del(1)*(d(1)^2+bos(j,0,0)*d(1)+bos(tt,0,0))*der(2);
  327. la2:=del(1)*(d(1)+2*bos(j,0,0)/3)*der(2);
  328. com:=sub(del(1)=1,der(2)=1,lax*la2-la2*lax);
  329. operator boss;
  330. boss(j,t):=d_part(com,1);
  331. boss(tt,t):=d_part(com,0);
  332. % let us shift bos(tt,0,0) to
  333. bos(tt,0,0):=bos(tx,0,0)/2+bos(j,0,0)**2/6 + bos(j,0,1)/2;
  334. bos(tt,0,1):=pg(1,bos(tt,0,0));
  335. bos(tt,0,2):=pg(1,bos(tt,0,1));
  336. fer(tt,1,0):=pr(1,bos(tt,0,0));
  337. fer(tt,2,0):=pr(2,bos(tt,0,0));
  338. % then the equations of motion are;
  339. bos(j,t):=boss(j,t);
  340. bos(tx,t):=2*(boss(tt,t) - boss(j,t)*bos(j,0,0)/3-
  341. pg(1,boss(j,t))/2);
  342. clear lax,la2;
  343. clearrules chiral;
  344. let trad;
  345. %23.) the Jacobi identity;
  346. % we will find the N=2 susy extension of the Virasoro algebra.
  347. % First we found the most general form of the susy-pseudo-differential
  348. % element of the dimension two.
  349. vira:=pse_ele(2,{{f,1,b}},a);
  350. % This vira should be antisymmetrical so we found
  351. ewa:=vira+cp(vira);
  352. %we first solve ewa in order to found free coefficients;
  353. load_package groebner;
  354. adam:=groesolve(sub(der(1)=1,der(2)=1,d(1)=1,lyst1(ewa)));
  355. % we define now the most general antisymmetrical susy-pseudo-symmetrical
  356. % element of conformal dimension two.
  357. vira:=sub(adam,vira);
  358. % we make additional assumption that our Poisson tensor vira should be O(2)
  359. % invariant under the change of susy derivatives;
  360. dad:=odwa(vira)-vira;
  361. factor der;
  362. wyr1:=sub(der(1)=1,der(2)=1,lyst1(dad));
  363. remfac der;
  364. dad:=groesolve(wyr1);
  365. vira:=sub(dad,vira);
  366. % we check wheather it is really O(2) invariant;
  367. vira-odwa(vira);
  368. % O.K
  369. %so
  370. %now we check the Jacobi identity
  371. jjacob:=fjacob(vira,f);
  372. % we now check jjacob on the susy-divergence behaviour w.r. to the test
  373. % superfunction !#a;
  374. az:=war(jjacob,!#a);
  375. as:=groesolve(az);
  376. array ew(3);
  377. for k:=1:2 do ew(k):=part(as,k);
  378. % as we see we have two different solutions
  379. % first give us classical realizations of the Virasoro algebra
  380. % (without the center term) which is
  381. sub(ew(1),vira);
  382. % the second solution give us desired susy generalizations of
  383. % Virasoro algebra
  384. sub(ew(2),vira);
  385. % the coefficient "a" could be absorbed by redefinations of
  386. % bos(f,0,0)
  387. % we check that previous result satisfies the antisymmetric requirements
  388. ws + cp(ws);
  389. clearrules trad;
  390. let chiral1 ;
  391. % We check that for chiral1 realization the following operator
  392. vira:=der(3)*d(1)+bos(j,0,1)+bos(j,0,0)*d(1)+
  393. fer(j,1,0)*der(2)+fer(j,2,0)*der(1);
  394. % satisfy the Jacobi identity;
  395. jjacob:=fjacob(vira,j);
  396. az:=war(jjacob,!#a);
  397. %24 superintegration
  398. clearrules chiral1;
  399. let trad;
  400. as:=s_int(0,bos(f,3,0)^2-bos(f,0,1)^2,{f});
  401. as1:=sub(d(-3)=0,ws);
  402. as2:=sub(d(-3)=1,as-as1);
  403. as3:=s_int(1,as2,{f});
  404. as4:=sub(del(-1)=0,ws);
  405. as4:=sub(del(-1)=1,as3-as4);
  406. as5:=s_int(2,as4,{f});
  407. end;