123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 |
- on list;
- on errcont;
- % 1.) Example of ordering of objects such as fer,bos,axp;
- axp(bos(f,0,0))*bos(g,3,1)*fer(k,1,0);
- %fer(k,1,0)*bos(g,3,1)*axp(bos(f,0,0));
- % 2.) Example of ordering of fer and fer objects
- fer(f,1,2)*fer(f,1,2);
- % 0
- fer(f,1,2)*fer(g,2,3);
- % -fer(g,2,3)*fer(f,1,2);
- fer(f,1,2)*fer(f,1,3);
- % - fer(f,1,3)*fer(f,1,2);
- fer(f,1,2)*fer(f,2,2);
- % - fer(f,2,2)*fer(f,1,2);
- % 3.) Example of ordering of bos and bos objects;
- bos(f,3,0)*bos(g,0,4);
- %bos(g,0,4)*bos(f,3,0);
- bos(f,3,0)*bos(f,0,0);
- %bos(f,3,0)*bos(f,0,0);
- bos(f,3,2)*bos(f,3,5);
- %bos(f,3,5)*bos(f,3,2);
- % 4.) ordering of inverse superfunctions;
- % last index in bos objects denotes powers;
- bos(f,0,3)*bos(k,0,2)*bos(zz,0,3,-1)*bos(k,0,2,-1);
- %bos(zz,0,3,-1)*bos(f,0,3);
- bos(c,0,3)*bos(b,0,2)*bos(a,0,3,-1)*bos(b,0,2,-1);
- %bos(c,0,3)*bos(a,0,3,-1);
- % 5.) Demostration of inverse rule;
- let inverse;
- bos(f,0,3)**3*bos(k,3,1)**40*bos(f,0,3,-2);
- %bos(k,3,1,40)*bos(f,0,3,1);
- clearrules inverse;
- % 6.) Demonstration of (susy) derivative operators;
- % Up to now we did not decided on the chirality assumption
- % so let us check first the tradicional algebra os susy derivative;
- let trad;
- %first susy derivative
- der(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0));
- fer(g,2,1)*bos(f,0,2,-2)*axp(fer(k,1,2)*fer(h,2,1))*del(1);
- sub(del=der,ws);
- %second susy derivative
- der(2)*fer(g,2,3)*bos(kk,0,3)*axp(bos(f,3,0));
- fer(r,2,1)*bos(kk,3,4,-4)*axp(fer(f,1,2)*fer(g,2,1))*del(2);
- sub(del=der,ws);
- %usual derivative;
- d(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0));
- fer(g,2,1)*bos(f,0,2,-2)*axp(fer(h,1,2)*fer(k,2,1))*d(2);
- sub(d(2)=d(1),ws);
- % 7.) the value of action of (susy) derivative;
- xxx:=fer(f,1,2)*bos(k,0,2,-2)*axp(fer(h,2,0)*fer(aa,1,3));
- yyy:=fer(g,2,3)*bos(kk,3,1,-3)*axp(bos(f,0,2,-3));
- %first susy derivative
- pr(1,xxx);
- pr(1,yyy);
- %second susy2 derivative;
- pr(2,xxx);
- pr(2,yyy);
- % third susy2 derivative;
- pr(3,xxx);
- pr(3,yyy);
- clearrules trad;
- let chiral;
- pr(3,xxx);
- clearrules chiral;
- let chiral1;
- pr(3,xxx);
- clearrules chiral1;
- let trad;
- % usual derivative
- pg(1,xxx);
- pg(3,yyy);
- clear xxx,yyy;
- % 8.)
- % And now let us change traditional algebra on the chiral algebra;
- clearrules trad;
- let chiral;
- % And now we compute the same derivative but in the chiral
- % representation;
- %first susy derivative
- der(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0));
- fer(g,2,1)*bos(f,0,2,-2)*axp(fer(k,1,2)*fer(h,2,1))*del(1);
- sub(del=der,ws);
- %second susy derivative
- der(2)*fer(g,2,3)*bos(kk,0,3)*axp(bos(f,3,0));
- fer(r,2,1)*bos(kk,3,4,-4)*axp(fer(f,1,2)*fer(g,2,1))*del(2);
- sub(del=der,ws);
- ;
- % 9.) the value of action of (susy) derivative;
- xxx:=fer(f,1,2)*bos(k,0,2,-2)*axp(fer(h,2,0)*fer(aa,1,3));
- yyy:=fer(g,2,3)*bos(kk,3,1,-3)*axp(bos(f,0,2,-3));
- %first susy derivative
- pr(1,xxx);
- pr(1,yyy);
- %second susy2 derivative;
- pr(2,xxx);
- pr(2,yyy);
- clear xxx,yyy;
- % We return back to the traditional algebra;
- clearrules chiral;
- let trad;
- % 10.) The components of super-objects;
- xxx:=fer(f,2,3)*bos(g,3,2,2);
- % all components;
- fpart(xxx);
- %bosonic sector;
- bpart(xxx);
- %the given component
- bf_part(xxx,0);
- %the given component in the bosonic sector;
- b_part(xxx,0);
- b_part(xxx,1);
- clear zzz;
- clearrules trad;
- let chiral;
- zzz:=bos(f,3,1,-1)*bos(g,0,1,2);
- b_part(zzz,0);
- b_part(zzz,3);
- clearrules chiral;
- let chiral1;
- b_part(zzz,0);
- b_part(zzz,3);
- clearrules chiral1;
- let trad;
- %11 matrix represenattion of operators;
- lax:=der(1)*der(2)+bos(u,0,0);
- macierz(lax,b,b);
- macierz(lax,f,b);
- macierz(lax,b,f);
- macierz(lax,f,f);
- % 12.) Demonstration of chirality properties;
- clearrules trad;
- let chiral;
- b_chiral:={f0};
- b_antychiral:={f1};
- f_chiral:={f2};
- f_antychiral:={f3};
- for k:=0:3 do write fer(f0,k,0);
- for k:=0:3 do write fer(f1,k,0);
- for k:=0:3 do write fer(f2,k,0);
- for k:=0:3 do write fer(f3,k,0);
- for k:=0:3 do write bos(f1,k,0);
- for k:=0:3 do write bos(f2,k,0);
- for k:=0:3 do write bos(f2,k,0);
- for k:=0:3 do write bos(f3,k,0);
- % 13.) Integrations;
- d(-1)*xxx;
- %we have to declare ww;
- ww:=2;
- d(-1)*xxx;
- xxx*d(-2);
- d(-3)*xxx;
- ww:=4;
- d(-1)**5:=0;d(-2)**5:=0;
- d(-1)*yyy;
- yyy*d(-2);
- clear d(-1)**5,d(-2)**5;
- on list;
- % 14.) The accelerations of integrations;
- clear ww;
- ww:=3;
- let drr;
- let cutoff;
- cut:=4;
- d(-1)*xxx;
- d(-1)**2*yyy;
- clear ww,cut;
- ww:=4;
- cut:=5;
- d(-1)**3*yyy;
- d(-1)*xxx;
- clearrules cutoff;clearrules drr;
- clear cut,ww;
- % it is possible to use directly accelerated integrations oprators dr;
- ww:=4;
- dr(-2)*fer(f,1,2)*bos(kk,0,2);
- on time;
- showtime;
- dr(-3)*bos(g,3,1)*bos(ff,3,2);
- showtime;
- %if you try usual integration
- d(-1)**3*bos(g,3,1)*bos(ff,3,2);
- showtime;
- % then the time - diffrences is evident. In this example d(-1)
- % integration is 10 times slower then dr integrations.
- off time;
- let cutoff;
- cut:=5;
- dr(-2)*fer(f,1,2)*bos(aa,0,1);
- dr(-3)*bos(g,3,1)*bos(bb,0,3);
- clear ww,cut;
- ww:=6;
- cut:=7;
- dr(-3)*fer(k,2,3)*bos(h,0,2);
- dr(-4)*bos(h,0,3)*bos(k,0,2);
- clear ww,cut;
- clearrules cutoff;
- % 15.) The combinations
- %the combinations of dim 7 constructed from fields of
- % the 2 ,3 dimensions, free parameters are numerated by "a";
- w_comb({{f,2,b},{g,3,b}},7,a,b);
- w_comb({{f,2,f},{g,3,f}},4,s,f);
- % and now compute the last example but withouth the (susy)divergence
- %terms;
- fcomb({{f,2,b},{g,3,b}},5,c,b);
- fcomb({{f,1,f}},4,r,f);
- % 16.) The element of pseudo - susy -differential algebra;
- pse_ele(2,{{f,2,b}},c);
- pse_ele(3,{{f,2,b}},c);
- pse_ele(4,{{f,2,b}},c);
- pse_ele(3,{{f,1,b},{g,2,b}},r);
- % The components of the elements of pseudo - susy - differential algebra;
- xxx:=pse_ele(2,{{f,1,b},{g,2,b}},r);
- for k:=0:3 do write s_part(xxx,k);
- for k:=0:2 do write d_part(xxx,k);
- for k:=0:2 do for l:=0:3 do write sd_part(xxx,l,k);
- clear xxx;
- % 17.) Projection onto invariant subspace;
- xxx:=
- w_comb({{f,1,b}},2,a,b)*d(1)+
- w_comb({{f,1,b}},3,b,b)*der(1)*der(2)+
- w_comb({{f,1,b}},5/2,c,b)*der(1)+
- w_comb({{f,1,b}},3,ee,b)*d(1)^2+
- w_comb({{f,1,b}},7/2,fe,b)*d(1)*der(2)+
- w_comb({{f,1,b}},3,g,b)*der(1)*der(2)*d(1);
- for k:=0:2 do write rzut(xxx,k);
- clear xxx;
- % 18.) Test for the adjoint operators;
- cp(der(1));
- cp(der(1)*der(2));
- clearrules trad;
- let chiral1;
- cp(der(3));
- cp(der(1)*d(1));
- clearrules chiral1;
- let trad;
- cp(d(1));
- cp(d(2));
- as:=fer(f,1,0)*d(-3)*fer(g,2,0)+fer(h,1,2)*d(-3)*fer(kk,2,1);
- cp(as);
- cp(as*as);
- as:=fer(f,1,0);
- cp(as);
- cp(ws);
- clear as;
- as:=bos(f,0,0);
- as1:=as*der(1);
- cp(as1);
- cp(ws);
- cp(as1)+der(1)*as;
- as2:=as*der(1)*der(2);
- cp(as2);
- cp(ws);
- cp(as2) - der(1)*der(2)*as;
- clear as;
- as:=mat((fer(f,1,0)*der(1),bos(g,0,0)*d(-3)*bos(h,0,0)),
- (fer(h,2,1),fer(h,1,2)*d(-3)*fer(k,2,3)));
- cp(as);
- clear as;
- % 19.) Analog of coeff
- xxx:=pse_ele(2,{{f,1,b}},a);
- yyy:=lyst(xxx);
- zzz:=lyst1(xxx);
- yyy:=lyst2(xxx);
- clear xxx,yyy,zzz;
- % 20.) Simplifications;
- % we would like to compute third generalizations of the SUSY KdV
- % equation
- % example from Z.Popowicz Phys.Lett.A.174 (1993) p.87
- lax:=d(1)+d(-3)*der(1)*der(2)*bos(u,0,0);
- lb2:=lax^2;
- la2:=chan(lb2);
- lb3:=lax*la2;
- la3:=chan(lb3);
- lax3:=rzut(la3,1);
- comm:=lax*lax3 - lax3*lax;
- com:=chan(comm);
- result:=sub(der=del,com);
- %the equation is
- equ:=sub(del(1)=1,del(2)=1,d(-3)=1,result);
- clear lax,lb2,la2,lb3,la3,lax3,comm,com,result;
- % we now compute the same but starting from
- % different realizations of susy algebra
- %
- clearrules trad;
- let chiral1;
- lax:=d(1)+d(-3)*del(3)*bos(u,0,0);
- la2:=chan(lax^2);
- la3:=rzut(chan(lax*la2),0);
- com:=chan(lax*la3-la3*lax);
- equ_chiral1:=sub(d(-3)=1,del(3)=1,com);
- clear lax,lb2,la2,lb3,la3,lax3,lax,comm,com,result;
- clearrules chiral1;
- let trad;
- % 21.) Conservation laws;
- % we would like to check the conservations laws for our third
- %generalization of susy kdv equation;
- %
- ham:=fcomb({{u,1,b}},3,a,b);
- conserv:=dot_ham({{u,equ}},ham);
- % we check now on susy-divergence behaviour;
- %
- az:=war(conserv,u);
- solve(az);
- clear equ,ha,conserv,az;
- % 22.) The residue of Lax operator
- % we would like to find conservation laws for Lax susy KdV
- % equation considered in the previous example
- %
- lax:=d(1)-d(-3)*del(1)*der(2)*bos(u,0,0);
- lb2:=lax^2;
- la2:=chan(lb2);
- lb4:=la2^2;
- kxk^3:=0;
- la4:=chan(lb4);
- lc4:=sub(kxk=1,qq=-3,sub(d(-3)=kxk*d(qq),la4));
- lb5:=lax*lc4;
- lc5:=s_part(lb5,3);
- la5:=lc5-sub(d(-3)=0,lc5);
- ld5:=chan(la5);
- konserv:=sub(d(-3)=1,d_part(ld5,-1));
- clear lax,lb2,la2,lb4,kxk,la4,lc4,lb5,lc5,la5,konserv;
- %22.) The N=2 SuSy Boussinesq equation
- % example from Z.Popowicz Phys.LettB.319 (1993) 478-484
- clearrules trad;
- let chiral;
- lax:=del(1)*(d(1)^2+bos(j,0,0)*d(1)+bos(tt,0,0))*der(2);
- la2:=del(1)*(d(1)+2*bos(j,0,0)/3)*der(2);
- com:=sub(del(1)=1,der(2)=1,lax*la2-la2*lax);
- operator boss;
- boss(j,t):=d_part(com,1);
- boss(tt,t):=d_part(com,0);
- % let us shift bos(tt,0,0) to
- bos(tt,0,0):=bos(tx,0,0)/2+bos(j,0,0)**2/6 + bos(j,0,1)/2;
- bos(tt,0,1):=pg(1,bos(tt,0,0));
- bos(tt,0,2):=pg(1,bos(tt,0,1));
- fer(tt,1,0):=pr(1,bos(tt,0,0));
- fer(tt,2,0):=pr(2,bos(tt,0,0));
- % then the equations of motion are;
- bos(j,t):=boss(j,t);
- bos(tx,t):=2*(boss(tt,t) - boss(j,t)*bos(j,0,0)/3-
- pg(1,boss(j,t))/2);
- clear lax,la2;
- clearrules chiral;
- let trad;
- %23.) the Jacobi identity;
- % we will find the N=2 susy extension of the Virasoro algebra.
- % First we found the most general form of the susy-pseudo-differential
- % element of the dimension two.
- vira:=pse_ele(2,{{f,1,b}},a);
- % This vira should be antisymmetrical so we found
- ewa:=vira+cp(vira);
- %we first solve ewa in order to found free coefficients;
- load_package groebner;
- adam:=groesolve(sub(der(1)=1,der(2)=1,d(1)=1,lyst1(ewa)));
- % we define now the most general antisymmetrical susy-pseudo-symmetrical
- % element of conformal dimension two.
- vira:=sub(adam,vira);
- % we make additional assumption that our Poisson tensor vira should be O(2)
- % invariant under the change of susy derivatives;
- dad:=odwa(vira)-vira;
- factor der;
- wyr1:=sub(der(1)=1,der(2)=1,lyst1(dad));
- remfac der;
- dad:=groesolve(wyr1);
- vira:=sub(dad,vira);
- % we check wheather it is really O(2) invariant;
- vira-odwa(vira);
- % O.K
- %so
- %now we check the Jacobi identity
- jjacob:=fjacob(vira,f);
- % we now check jjacob on the susy-divergence behaviour w.r. to the test
- % superfunction !#a;
- az:=war(jjacob,!#a);
- as:=groesolve(az);
- array ew(3);
- for k:=1:2 do ew(k):=part(as,k);
- % as we see we have two different solutions
- % first give us classical realizations of the Virasoro algebra
- % (without the center term) which is
- sub(ew(1),vira);
- % the second solution give us desired susy generalizations of
- % Virasoro algebra
- sub(ew(2),vira);
- % the coefficient "a" could be absorbed by redefinations of
- % bos(f,0,0)
- % we check that previous result satisfies the antisymmetric requirements
- ws + cp(ws);
- clearrules trad;
- let chiral1 ;
- % We check that for chiral1 realization the following operator
- vira:=der(3)*d(1)+bos(j,0,1)+bos(j,0,0)*d(1)+
- fer(j,1,0)*der(2)+fer(j,2,0)*der(1);
- % satisfy the Jacobi identity;
- jjacob:=fjacob(vira,j);
- az:=war(jjacob,!#a);
- %24 superintegration
- clearrules chiral1;
- let trad;
- as:=s_int(0,bos(f,3,0)^2-bos(f,0,1)^2,{f});
- as1:=sub(d(-3)=0,ws);
- as2:=sub(d(-3)=1,as-as1);
- as3:=s_int(1,as2,{f});
- as4:=sub(del(-1)=0,ws);
- as4:=sub(del(-1)=1,as3-as4);
- as5:=s_int(2,as4,{f});
- end;
|