pgt.up 1.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. % Exact soluition of the Poincare Gauge Theory
  2. with the Kerr-Newman in De Sitter metric;
  3. Zero Time;
  4. Coordinates t,r,th,ph;
  5. Constants m,j,q,L;
  6. Find Metric;
  7. Functions f(th),Si(r,th),De(r),J(th),Q(r);
  8. Frame
  9. T0 = SQRT(De)/SQRT(Si)*(d t + j*SIN(th)^2*d ph),
  10. T1 = SQRT(Si)/SQRT(De)*d r,
  11. T2 = SQRT(Si)/SQRT(f)*d th,
  12. T3 = SQRT(f)/SQRT(Si)*SIN(th)*(j*d t + (r^2+j^2)*d ph);
  13. Constants L0,L1,L2,L3,L4,L5,L6;
  14. L-Constants LCONST1 = L0,
  15. LCONST2 = -L0+2*L1,
  16. LCONST3 = L0+2*L3-2*L1,
  17. LCONST4 = L0+2*L5-2*L2,
  18. LCONST5 = -L0+2*L2,
  19. LCONST6 = L0+2*L4-2*L2,
  20. LCONST0 = 1;
  21. FF = SQRT(1+2/3*L*L3)/SQRT(GCONST)*q/Si^2*( (r^2-J^2)*S01
  22. +2*r*J*S23);
  23. On TORSION,CCONST;
  24. New V.n5;
  25. V1=1/Si^2*((Q-q^2/2)*r-m*J^2);
  26. V2=-SQRT(f)/SQRT(Si)/Si^2*Q*j*SIN(th)*J;
  27. V3=SQRT(f)/SQRT(Si)/Si^2*Q*j*SIN(th)*r;
  28. V4=1/Si^2*Q*J;
  29. V5=1/Si^2*Q*r;
  30. Torsion
  31. THETA0 = SQRT(Si)/SQRT(De)*(V1*S01+2*V4*S23) +
  32. Si/De*(-V2*(S02-S12)-V3*(S03-S13)),
  33. THETA2 = SQRT(Si)/SQRT(De)*(-V5*(S02-S12)-V4*(S03-S13)),
  34. THETA3 = SQRT(Si)/SQRT(De)*( V4*(S02-S12)-V5*(S03-S13));
  35. THETA1 = THETA0;
  36. Transform Metric ( (1/SQRT(2),-1/SQRT(2),0,0),
  37. (1/SQRT(2), 1/SQRT(2),0,0),
  38. (0,0,1/SQRT(2), I/SQRT(2)),
  39. (0,0,1/SQRT(2),-I/SQRT(2)) );
  40. Find Maxwell Eq, TEM;
  41. Find Curvature Components;
  42. Show Time;
  43. Let SIN(th)^2=1-COS(th)^2;
  44. Let f = 1 + L/3*j^2*COS(th)^2;
  45. Let Si = r^2 + j^2*COS(th)^2;
  46. Let De = r^2 + j^2 + q^2 - 2*m*r - L/3*r^2*(r^2+j^2);
  47. Let Q = m*r-q^2/2;
  48. Let J = j*COS(th);
  49. Evaluate All;
  50. Show Time;
  51. Write Maxwell Eq;
  52. Write Curvature Components;
  53. Let CCONST=L;
  54. Let MC1=-2-4/3*L*L3, MC2=4+8/3*L*L3;
  55. Find and Write Gravitational Equations;
  56. Show Time;