123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- % Exact soluition of the Poincare Gauge Theory
- with the Kerr-Newman in De Sitter metric;
- Zero Time;
- Coordinates t,r,th,ph;
- Constants m,j,q,L;
- Find Metric;
- Functions f(th),Si(r,th),De(r),J(th),Q(r);
- Frame
- T0 = SQRT(De)/SQRT(Si)*(d t + j*SIN(th)^2*d ph),
- T1 = SQRT(Si)/SQRT(De)*d r,
- T2 = SQRT(Si)/SQRT(f)*d th,
- T3 = SQRT(f)/SQRT(Si)*SIN(th)*(j*d t + (r^2+j^2)*d ph);
- Constants L0,L1,L2,L3,L4,L5,L6;
- L-Constants LCONST1 = L0,
- LCONST2 = -L0+2*L1,
- LCONST3 = L0+2*L3-2*L1,
- LCONST4 = L0+2*L5-2*L2,
- LCONST5 = -L0+2*L2,
- LCONST6 = L0+2*L4-2*L2,
- LCONST0 = 1;
- FF = SQRT(1+2/3*L*L3)/SQRT(GCONST)*q/Si^2*( (r^2-J^2)*S01
- +2*r*J*S23);
- On TORSION,CCONST;
- New V.n5;
- V1=1/Si^2*((Q-q^2/2)*r-m*J^2);
- V2=-SQRT(f)/SQRT(Si)/Si^2*Q*j*SIN(th)*J;
- V3=SQRT(f)/SQRT(Si)/Si^2*Q*j*SIN(th)*r;
- V4=1/Si^2*Q*J;
- V5=1/Si^2*Q*r;
- Torsion
- THETA0 = SQRT(Si)/SQRT(De)*(V1*S01+2*V4*S23) +
- Si/De*(-V2*(S02-S12)-V3*(S03-S13)),
- THETA2 = SQRT(Si)/SQRT(De)*(-V5*(S02-S12)-V4*(S03-S13)),
- THETA3 = SQRT(Si)/SQRT(De)*( V4*(S02-S12)-V5*(S03-S13));
- THETA1 = THETA0;
- Transform Metric ( (1/SQRT(2),-1/SQRT(2),0,0),
- (1/SQRT(2), 1/SQRT(2),0,0),
- (0,0,1/SQRT(2), I/SQRT(2)),
- (0,0,1/SQRT(2),-I/SQRT(2)) );
- Find Maxwell Eq, TEM;
- Find Curvature Components;
- Show Time;
- Let SIN(th)^2=1-COS(th)^2;
- Let f = 1 + L/3*j^2*COS(th)^2;
- Let Si = r^2 + j^2*COS(th)^2;
- Let De = r^2 + j^2 + q^2 - 2*m*r - L/3*r^2*(r^2+j^2);
- Let Q = m*r-q^2/2;
- Let J = j*COS(th);
- Evaluate All;
- Show Time;
- Write Maxwell Eq;
- Write Curvature Components;
- Let CCONST=L;
- Let MC1=-2-4/3*L*L3, MC2=4+8/3*L*L3;
- Find and Write Gravitational Equations;
- Show Time;
|