md5_utils.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. /*
  2. * This code implements the MD5 message-digest algorithm.
  3. * The algorithm is due to Ron Rivest. This code was
  4. * written by Colin Plumb in 1993, no copyright is claimed.
  5. * This code is in the public domain; do with it what you wish.
  6. *
  7. * Equivalent code is available from RSA Data Security, Inc.
  8. * This code has been tested against that, and is equivalent,
  9. * except that you don't need to include two pages of legalese
  10. * with every copy.
  11. *
  12. * To compute the message digest of a chunk of bytes, declare an
  13. * MD5Context structure, pass it to MD5Init, call MD5Update as
  14. * needed on buffers full of bytes, and then call MD5Final, which
  15. * will fill a supplied 16-byte array with the digest.
  16. *
  17. * Changed so as no longer to depend on Colin Plumb's `usual.h' header
  18. * definitions
  19. * - Ian Jackson <ian@chiark.greenend.org.uk>.
  20. * Still in the public domain.
  21. */
  22. #include <string.h> /* for memcpy() */
  23. #include "common/md5_utils.h"
  24. static void byteSwap(UWORD32 *buf, unsigned words) {
  25. md5byte *p;
  26. /* Only swap bytes for big endian machines */
  27. int i = 1;
  28. if (*(char *)&i == 1) return;
  29. p = (md5byte *)buf;
  30. do {
  31. *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 |
  32. ((unsigned)p[1] << 8 | p[0]);
  33. p += 4;
  34. } while (--words);
  35. }
  36. /*
  37. * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
  38. * initialization constants.
  39. */
  40. void MD5Init(struct MD5Context *ctx) {
  41. ctx->buf[0] = 0x67452301;
  42. ctx->buf[1] = 0xefcdab89;
  43. ctx->buf[2] = 0x98badcfe;
  44. ctx->buf[3] = 0x10325476;
  45. ctx->bytes[0] = 0;
  46. ctx->bytes[1] = 0;
  47. }
  48. /*
  49. * Update context to reflect the concatenation of another buffer full
  50. * of bytes.
  51. */
  52. void MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) {
  53. UWORD32 t;
  54. /* Update byte count */
  55. t = ctx->bytes[0];
  56. if ((ctx->bytes[0] = t + len) < t)
  57. ctx->bytes[1]++; /* Carry from low to high */
  58. t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
  59. if (t > len) {
  60. memcpy((md5byte *)ctx->in + 64 - t, buf, len);
  61. return;
  62. }
  63. /* First chunk is an odd size */
  64. memcpy((md5byte *)ctx->in + 64 - t, buf, t);
  65. byteSwap(ctx->in, 16);
  66. MD5Transform(ctx->buf, ctx->in);
  67. buf += t;
  68. len -= t;
  69. /* Process data in 64-byte chunks */
  70. while (len >= 64) {
  71. memcpy(ctx->in, buf, 64);
  72. byteSwap(ctx->in, 16);
  73. MD5Transform(ctx->buf, ctx->in);
  74. buf += 64;
  75. len -= 64;
  76. }
  77. /* Handle any remaining bytes of data. */
  78. memcpy(ctx->in, buf, len);
  79. }
  80. /*
  81. * Final wrapup - pad to 64-byte boundary with the bit pattern
  82. * 1 0* (64-bit count of bits processed, MSB-first)
  83. */
  84. void MD5Final(md5byte digest[16], struct MD5Context *ctx) {
  85. int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
  86. md5byte *p = (md5byte *)ctx->in + count;
  87. /* Set the first char of padding to 0x80. There is always room. */
  88. *p++ = 0x80;
  89. /* Bytes of padding needed to make 56 bytes (-8..55) */
  90. count = 56 - 1 - count;
  91. if (count < 0) { /* Padding forces an extra block */
  92. memset(p, 0, count + 8);
  93. byteSwap(ctx->in, 16);
  94. MD5Transform(ctx->buf, ctx->in);
  95. p = (md5byte *)ctx->in;
  96. count = 56;
  97. }
  98. memset(p, 0, count);
  99. byteSwap(ctx->in, 14);
  100. /* Append length in bits and transform */
  101. ctx->in[14] = ctx->bytes[0] << 3;
  102. ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
  103. MD5Transform(ctx->buf, ctx->in);
  104. byteSwap(ctx->buf, 4);
  105. memcpy(digest, ctx->buf, 16);
  106. memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
  107. }
  108. #ifndef ASM_MD5
  109. /* The four core functions - F1 is optimized somewhat */
  110. /* #define F1(x, y, z) (x & y | ~x & z) */
  111. #define F1(x, y, z) (z ^ (x & (y ^ z)))
  112. #define F2(x, y, z) F1(z, x, y)
  113. #define F3(x, y, z) (x ^ y ^ z)
  114. #define F4(x, y, z) (y ^ (x | ~z))
  115. /* This is the central step in the MD5 algorithm. */
  116. #define MD5STEP(f, w, x, y, z, in, s) \
  117. (w += f(x, y, z) + in, w = (w << s | w >> (32 - s)) + x)
  118. #if defined(__clang__) && defined(__has_attribute)
  119. #if __has_attribute(no_sanitize)
  120. #define AOM_NO_UNSIGNED_OVERFLOW_CHECK \
  121. __attribute__((no_sanitize("unsigned-integer-overflow")))
  122. #endif
  123. #if __clang_major__ >= 12
  124. #define VPX_NO_UNSIGNED_SHIFT_CHECK \
  125. __attribute__((no_sanitize("unsigned-shift-base")))
  126. #endif // __clang__ >= 12
  127. #endif // __clang__
  128. #ifndef AOM_NO_UNSIGNED_OVERFLOW_CHECK
  129. #define AOM_NO_UNSIGNED_OVERFLOW_CHECK
  130. #endif
  131. #ifndef AOM_NO_UNSIGNED_SHIFT_CHECK
  132. #define AOM_NO_UNSIGNED_SHIFT_CHECK
  133. #endif
  134. /*
  135. * The core of the MD5 algorithm, this alters an existing MD5 hash to
  136. * reflect the addition of 16 longwords of new data. MD5Update blocks
  137. * the data and converts bytes into longwords for this routine.
  138. */
  139. AOM_NO_UNSIGNED_OVERFLOW_CHECK AOM_NO_UNSIGNED_SHIFT_CHECK void MD5Transform(
  140. UWORD32 buf[4], UWORD32 const in[16]) {
  141. register UWORD32 a, b, c, d;
  142. a = buf[0];
  143. b = buf[1];
  144. c = buf[2];
  145. d = buf[3];
  146. MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
  147. MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
  148. MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
  149. MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
  150. MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
  151. MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
  152. MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
  153. MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
  154. MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
  155. MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
  156. MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  157. MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  158. MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  159. MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  160. MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  161. MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
  162. MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
  163. MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
  164. MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  165. MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
  166. MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
  167. MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  168. MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  169. MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
  170. MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
  171. MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  172. MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
  173. MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
  174. MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  175. MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
  176. MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
  177. MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
  178. MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
  179. MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
  180. MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  181. MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  182. MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
  183. MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
  184. MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
  185. MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  186. MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  187. MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
  188. MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
  189. MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
  190. MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
  191. MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  192. MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  193. MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
  194. MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
  195. MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
  196. MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  197. MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
  198. MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  199. MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
  200. MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  201. MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
  202. MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
  203. MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  204. MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
  205. MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  206. MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
  207. MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  208. MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
  209. MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
  210. buf[0] += a;
  211. buf[1] += b;
  212. buf[2] += c;
  213. buf[3] += d;
  214. }
  215. #undef AOM_NO_UNSIGNED_OVERFLOW_CHECK
  216. #undef AOM_NO_UNSIGNED_SHIFT_CHECK
  217. #endif