tm-ns32k.h 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376
  1. /* Definitions of target machine for GNU compiler. NS32000 version.
  2. Copyright (C) 1988 Free Software Foundation, Inc.
  3. Contributed by Michael Tiemann (tiemann@mcc.com)
  4. This file is part of GNU CC.
  5. GNU CC is distributed in the hope that it will be useful,
  6. but WITHOUT ANY WARRANTY. No author or distributor
  7. accepts responsibility to anyone for the consequences of using it
  8. or for whether it serves any particular purpose or works at all,
  9. unless he says so in writing. Refer to the GNU CC General Public
  10. License for full details.
  11. Everyone is granted permission to copy, modify and redistribute
  12. GNU CC, but only under the conditions described in the
  13. GNU CC General Public License. A copy of this license is
  14. supposed to have been given to you along with GNU CC so you
  15. can know your rights and responsibilities. It should be in a
  16. file named COPYING. Among other things, the copyright notice
  17. and this notice must be preserved on all copies. */
  18. /* Note that some other tm- files include this one and then override
  19. many of the definitions that relate to assembler syntax. */
  20. /* Names to predefine in the preprocessor for this target machine. */
  21. #define CPP_PREDEFINES "-Dns32000 -Dunix"
  22. /* Print subsidiary information on the compiler version in use. */
  23. #define TARGET_VERSION printf (" (32000, National syntax)");
  24. /* Run-time compilation parameters selecting different hardware subsets. */
  25. extern int target_flags;
  26. /* Macros used in the machine description to test the flags. */
  27. /* Compile 32081 insns for floating point (not library calls). */
  28. #define TARGET_32081 (target_flags & 1)
  29. /* Compile using rtd insn calling sequence.
  30. This will not work unless you use prototypes at least
  31. for all functions that can take varying numbers of args. */
  32. #define TARGET_RTD (target_flags & 2)
  33. /* Compile passing first two args in regs 0 and 1. */
  34. #define TARGET_REGPARM (target_flags & 4)
  35. /* Macro to define tables used to set the flags.
  36. This is a list in braces of pairs in braces,
  37. each pair being { "NAME", VALUE }
  38. where VALUE is the bits to set or minus the bits to clear.
  39. An empty string NAME is used to identify the default VALUE. */
  40. #define TARGET_SWITCHES \
  41. { { "32081", 1}, \
  42. { "soft-float", -1}, \
  43. { "rtd", 2}, \
  44. { "nortd", -2}, \
  45. { "regparm", 4}, \
  46. { "noregparm", -4}, \
  47. { "", TARGET_DEFAULT}}
  48. /* target machine storage layout */
  49. /* Define this if most significant bit is lowest numbered
  50. in instructions that operate on numbered bit-fields.
  51. This is not true on the ns32k. */
  52. /* #define BITS_BIG_ENDIAN */
  53. /* Define this if most significant byte of a word is the lowest numbered. */
  54. /* That is not true on the ns32k. */
  55. /* #define BYTES_BIG_ENDIAN */
  56. /* Define this if most significant word of a multiword number is numbered. */
  57. /* This is not true on the ns32k. */
  58. /* #define WORDS_BIG_ENDIAN */
  59. /* Number of bits in an addressible storage unit */
  60. #define BITS_PER_UNIT 8
  61. /* Width in bits of a "word", which is the contents of a machine register.
  62. Note that this is not necessarily the width of data type `int';
  63. if using 16-bit ints on a 32000, this would still be 32.
  64. But on a machine with 16-bit registers, this would be 16. */
  65. #define BITS_PER_WORD 32
  66. /* Width of a word, in units (bytes). */
  67. #define UNITS_PER_WORD 4
  68. /* Width in bits of a pointer.
  69. See also the macro `Pmode' defined below. */
  70. #define POINTER_SIZE 32
  71. /* Allocation boundary (in *bits*) for storing pointers in memory. */
  72. #define POINTER_BOUNDARY 16
  73. /* Allocation boundary (in *bits*) for storing arguments in argument list. */
  74. #define PARM_BOUNDARY 32
  75. /* Boundary (in *bits*) on which stack pointer should be aligned. */
  76. #define STACK_BOUNDARY 32
  77. /* Allocation boundary (in *bits*) for the code of a function. */
  78. #define FUNCTION_BOUNDARY 16
  79. /* Alignment of field after `int : 0' in a structure. */
  80. #define EMPTY_FIELD_BOUNDARY 32
  81. /* Every structure's size must be a multiple of this. */
  82. #define STRUCTURE_SIZE_BOUNDARY 8
  83. /* No data type wants to be aligned rounder than this. */
  84. #define BIGGEST_ALIGNMENT 32
  85. /* Define this if move instructions will actually fail to work
  86. when given unaligned data. National claims that the NS32032
  87. works without strict alignment, but rumor has it that operands
  88. crossing a page boundary cause unpredictable results. */
  89. #define STRICT_ALIGNMENT
  90. /* Standard register usage. */
  91. /* Number of actual hardware registers.
  92. The hardware registers are assigned numbers for the compiler
  93. from 0 to just below FIRST_PSEUDO_REGISTER.
  94. All registers that the compiler knows about must be given numbers,
  95. even those that are not normally considered general registers. */
  96. #define FIRST_PSEUDO_REGISTER 18
  97. /* 1 for registers that have pervasive standard uses
  98. and are not available for the register allocator.
  99. On the ns32k, these are the FP, SP, (SB and PC are not included here). */
  100. #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
  101. 0, 0, 0, 0, 0, 0, 0, 0, \
  102. 1, 1}
  103. /* 1 for registers not available across function calls.
  104. These must include the FIXED_REGISTERS and also any
  105. registers that can be used without being saved.
  106. The latter must include the registers where values are returned
  107. and the register where structure-value addresses are passed.
  108. Aside from that, you can include as many other registers as you like. */
  109. #define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
  110. 1, 1, 1, 1, 0, 0, 0, 0, \
  111. 1, 1}
  112. /* Return number of consecutive hard regs needed starting at reg REGNO
  113. to hold something of mode MODE.
  114. This is ordinarily the length in words of a value of mode MODE
  115. but can be less for certain modes in special long registers.
  116. On the ns32k, all registers are 32 bits long. */
  117. #define HARD_REGNO_NREGS(REGNO, MODE) \
  118. ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
  119. /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
  120. On the 32000, all registers can hold all modes, except that
  121. double precision floats (and double ints) must fall on even-register
  122. boundaries */
  123. #define HARD_REGNO_MODE_OK(REGNO, MODE) \
  124. ((MODE) == DFmode \
  125. ? (((REGNO) & 1) == 0 \
  126. && (TARGET_32081 ? (REGNO) < 16 : (REGNO) < 8)) \
  127. : (MODE) == DImode ? ((REGNO) & 1) == 0 && (REGNO) < 8 \
  128. : 1)
  129. /* Value is 1 if it is a good idea to tie two pseudo registers
  130. when one has mode MODE1 and one has mode MODE2.
  131. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
  132. for any hard reg, then this must be 0 for correct output. */
  133. #define MODES_TIEABLE_P(MODE1, MODE2) \
  134. (((MODE1) == DFmode || (MODE1) == DImode) == ((MODE2) == DFmode || (MODE2) == DImode))
  135. /* Specify the registers used for certain standard purposes.
  136. The values of these macros are register numbers. */
  137. /* NS32000 pc is not overloaded on a register. */
  138. /* #define PC_REGNUM */
  139. /* Register to use for pushing function arguments. */
  140. #define STACK_POINTER_REGNUM 17
  141. /* Base register for access to local variables of the function. */
  142. #define FRAME_POINTER_REGNUM 16
  143. /* Value should be nonzero if functions must have frame pointers.
  144. Zero means the frame pointer need not be set up (and parms
  145. may be accessed via the stack pointer) in functions that seem suitable.
  146. This is computed in `reload', in reload1.c. */
  147. #define FRAME_POINTER_REQUIRED 0
  148. /* Base register for access to arguments of the function. */
  149. #define ARG_POINTER_REGNUM 16
  150. /* Register in which static-chain is passed to a function. */
  151. #define STATIC_CHAIN_REGNUM 1
  152. /* Register in which address to store a structure value
  153. is passed to a function. */
  154. #define STRUCT_VALUE_REGNUM 2
  155. /* Define the classes of registers for register constraints in the
  156. machine description. Also define ranges of constants.
  157. One of the classes must always be named ALL_REGS and include all hard regs.
  158. If there is more than one class, another class must be named NO_REGS
  159. and contain no registers.
  160. The name GENERAL_REGS must be the name of a class (or an alias for
  161. another name such as ALL_REGS). This is the class of registers
  162. that is allowed by "g" or "r" in a register constraint.
  163. Also, registers outside this class are allocated only when
  164. instructions express preferences for them.
  165. The classes must be numbered in nondecreasing order; that is,
  166. a larger-numbered class must never be contained completely
  167. in a smaller-numbered class.
  168. For any two classes, it is very desirable that there be another
  169. class that represents their union. */
  170. enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, GEN_AND_FLOAT_REGS,
  171. GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
  172. #define N_REG_CLASSES (int) LIM_REG_CLASSES
  173. /* Give names of register classes as strings for dump file. */
  174. #define REG_CLASS_NAMES \
  175. {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "GEN_AND_FLOAT_REGS", "GEN_AND_MEM_REGS", "ALL_REGS" }
  176. /* Define which registers fit in which classes.
  177. This is an initializer for a vector of HARD_REG_SET
  178. of length N_REG_CLASSES. */
  179. #define REG_CLASS_CONTENTS {0, 0x00ff, 0xff00, 0xffff, 0x300ff, 0x3ffff, }
  180. /* The same information, inverted:
  181. Return the class number of the smallest class containing
  182. reg number REGNO. This could be a conditional expression
  183. or could index an array. */
  184. #define REGNO_REG_CLASS(REGNO) \
  185. ((REGNO) < 8 ? GENERAL_REGS : (REGNO) < 16 ? FLOAT_REGS : ALL_REGS)
  186. /* The class value for index registers, and the one for base regs. */
  187. #define INDEX_REG_CLASS GENERAL_REGS
  188. #define BASE_REG_CLASS GEN_AND_MEM_REGS
  189. /* Get reg_class from a letter such as appears in the machine description. */
  190. #define REG_CLASS_FROM_LETTER(C) \
  191. ((C) == 'r' ? GENERAL_REGS \
  192. : (C) == 'f' ? FLOAT_REGS \
  193. : (C) == 'x' ? GEN_AND_MEM_REGS \
  194. : NO_REGS)
  195. /* The letters I, J, K, L and M in a register constraint string
  196. can be used to stand for particular ranges of immediate operands.
  197. This macro defines what the ranges are.
  198. C is the letter, and VALUE is a constant value.
  199. Return 1 if VALUE is in the range specified by C.
  200. On the ns32k, these letters are used as follows:
  201. I : Matches integers which are valid shift amounts for scaled indexing.
  202. These are 0, 1, 2, 3 for byte, word, double, and quadword.
  203. J : Matches integers which fit a "quick" operand. */
  204. #define CONST_OK_FOR_LETTER_P(VALUE, C) \
  205. ((C) == 'I' ? (0 <= (VALUE) && (VALUE) <= 3) : \
  206. (C) == 'J' ? (-8 <= (VALUE) && (VALUE) <= 7) : 0)
  207. /* Similar, but for floating constants, and defining letters G and H.
  208. Here VALUE is the CONST_DOUBLE rtx itself. */
  209. #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
  210. /* Given an rtx X being reloaded into a reg required to be
  211. in class CLASS, return the class of reg to actually use.
  212. In general this is just CLASS; but on some machines
  213. in some cases it is preferable to use a more restrictive class. */
  214. #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
  215. /* Return the maximum number of consecutive registers
  216. needed to represent mode MODE in a register of class CLASS. */
  217. /* On the 32000, this is the size of MODE in words */
  218. #define CLASS_MAX_NREGS(CLASS, MODE) \
  219. ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
  220. /* Stack layout; function entry, exit and calling. */
  221. /* Define this if pushing a word on the stack
  222. makes the stack pointer a smaller address. */
  223. #define STACK_GROWS_DOWNWARD
  224. /* Define this if the nominal address of the stack frame
  225. is at the high-address end of the local variables;
  226. that is, each additional local variable allocated
  227. goes at a more negative offset in the frame. */
  228. #define FRAME_GROWS_DOWNWARD
  229. /* Offset within stack frame to start allocating local variables at.
  230. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
  231. first local allocated. Otherwise, it is the offset to the BEGINNING
  232. of the first local allocated. */
  233. #define STARTING_FRAME_OFFSET 0
  234. /* If we generate an insn to push BYTES bytes,
  235. this says how many the stack pointer really advances by.
  236. On the 32000, sp@- in a byte insn really pushes a BYTE. */
  237. #define PUSH_ROUNDING(BYTES) (BYTES)
  238. /* Offset of first parameter from the argument pointer register value. */
  239. #define FIRST_PARM_OFFSET 8
  240. /* Value is 1 if returning from a function call automatically
  241. pops the arguments described by the number-of-args field in the call.
  242. FUNTYPE is the data type of the function (as a tree),
  243. or for a library call it is an identifier node for the subroutine name.
  244. On the 32000, the RET insn may be used to pop them if the number
  245. of args is fixed, but if the number is variable then the caller
  246. must pop them all. RET can't be used for library calls now
  247. because the library is compiled with the Unix compiler.
  248. Use of RET is a selectable option, since it is incompatible with
  249. standard Unix calling sequences. If the option is not selected,
  250. the caller must always pop the args. */
  251. #define RETURN_POPS_ARGS(FUNTYPE) \
  252. (TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
  253. && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
  254. || TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) == void_type_node))
  255. /* Define how to find the value returned by a function.
  256. VALTYPE is the data type of the value (as a tree).
  257. If the precise function being called is known, FUNC is its FUNCTION_DECL;
  258. otherwise, FUNC is 0. */
  259. /* On the 32000 the return value is in R0,
  260. or perhaps in F0 is there is fp support. */
  261. #define FUNCTION_VALUE(VALTYPE, FUNC) \
  262. (TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_32081 \
  263. ? gen_rtx (REG, TYPE_MODE (VALTYPE), 8) \
  264. : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
  265. /* Define how to find the value returned by a library function
  266. assuming the value has mode MODE. */
  267. /* On the 32000 the return value is in R0,
  268. or perhaps F0 is there is fp support. */
  269. #define LIBCALL_VALUE(MODE) \
  270. (((MODE) == DFmode || (MODE) == SFmode) && TARGET_32081 \
  271. ? gen_rtx (REG, MODE, 8) \
  272. : gen_rtx (REG, MODE, 0))
  273. /* 1 if N is a possible register number for a function value.
  274. On the 32000, R0 and F0 are the only registers thus used. */
  275. #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
  276. /* 1 if N is a possible register number for function argument passing.
  277. On the 32000, no registers are used in this way. */
  278. #define FUNCTION_ARG_REGNO_P(N) 0
  279. /* Define a data type for recording info about an argument list
  280. during the scan of that argument list. This data type should
  281. hold all necessary information about the function itself
  282. and about the args processed so far, enough to enable macros
  283. such as FUNCTION_ARG to determine where the next arg should go.
  284. On the ns32k, this is a single integer, which is a number of bytes
  285. of arguments scanned so far. */
  286. #define CUMULATIVE_ARGS int
  287. /* Initialize a variable CUM of type CUMULATIVE_ARGS
  288. for a call to a function whose data type is FNTYPE.
  289. For a library call, FNTYPE is 0.
  290. On the ns32k, the offset starts at 0. */
  291. #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE) \
  292. ((CUM) = 0)
  293. /* Update the data in CUM to advance over an argument
  294. of mode MODE and data type TYPE.
  295. (TYPE is null for libcalls where that information may not be available.) */
  296. #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
  297. ((CUM) += ((MODE) != BLKmode \
  298. ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
  299. : (int_size_in_bytes (TYPE) + 3) & ~3))
  300. /* Define where to put the arguments to a function.
  301. Value is zero to push the argument on the stack,
  302. or a hard register in which to store the argument.
  303. MODE is the argument's machine mode.
  304. TYPE is the data type of the argument (as a tree).
  305. This is null for libcalls where that information may
  306. not be available.
  307. CUM is a variable of type CUMULATIVE_ARGS which gives info about
  308. the preceding args and about the function being called.
  309. NAMED is nonzero if this argument is a named parameter
  310. (otherwise it is an extra parameter matching an ellipsis). */
  311. /* On the 32000 all args are pushed, except if -mregparm is specified
  312. then the first two words of arguments are passed in r0, r1.
  313. *NOTE* -mregparm does not work.
  314. It exists only to test register calling conventions. */
  315. #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
  316. ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
  317. /* For an arg passed partly in registers and partly in memory,
  318. this is the number of registers used.
  319. For args passed entirely in registers or entirely in memory, zero. */
  320. #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
  321. ((TARGET_REGPARM && (CUM) < 8 \
  322. && 8 < ((CUM) + ((MODE) == BLKmode \
  323. ? int_size_in_bytes (TYPE) \
  324. : GET_MODE_SIZE (MODE)))) \
  325. ? 2 - (CUM) / 4 : 0)
  326. /* This macro generates the assembly code for function entry.
  327. FILE is a stdio stream to output the code to.
  328. SIZE is an int: how many units of temporary storage to allocate.
  329. Refer to the array `regs_ever_live' to determine which registers
  330. to save; `regs_ever_live[I]' is nonzero if register number I
  331. is ever used in the function. This macro is responsible for
  332. knowing which registers should not be saved even if used. */
  333. #define FUNCTION_PROLOGUE(FILE, SIZE) \
  334. { register int regno; \
  335. register int nregs; \
  336. char used_regs_buf[32], *bufp = used_regs_buf; \
  337. int used_fregs_buf[8], *fbufp = used_fregs_buf; \
  338. extern char call_used_regs[]; \
  339. for (regno = 0, nregs = 0; regno < 8; regno++) \
  340. if (regs_ever_live[regno] && !call_used_regs[regno]) { \
  341. nregs += 1; \
  342. *bufp++ = 'r'; *bufp++ = regno+'0'; *bufp++ = ','; \
  343. } \
  344. for (; regno < 16; regno++) \
  345. if (regs_ever_live[regno] && !call_used_regs[regno]) { \
  346. *fbufp++ = regno; \
  347. } \
  348. if (bufp > used_regs_buf) --bufp; \
  349. *bufp = '\0'; \
  350. if (frame_pointer_needed) \
  351. fprintf (FILE, "\tenter [%s],%d\n", used_regs_buf,SIZE); \
  352. else if (nregs == 1) \
  353. fprintf (FILE, "\tmovd %s,tos\n", used_regs_buf); \
  354. else if (nregs) fprintf (FILE, "\tsave [%s]\n", used_regs_buf); \
  355. *fbufp = -1; \
  356. fbufp = used_fregs_buf; \
  357. while (*fbufp >= 0) \
  358. { \
  359. if ((*fbufp & 1) || (fbufp[0] != fbufp[1] - 1)) \
  360. fprintf (FILE, "\tmovf f%d,tos\n", *fbufp++ - 8); \
  361. else \
  362. { \
  363. fprintf (FILE, "\tmovl f%d,tos\n", fbufp[0] - 8); \
  364. fbufp += 2; \
  365. } \
  366. } \
  367. }
  368. /* Output assembler code to FILE to increment profiler label # LABELNO
  369. for profiling a function entry.
  370. THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
  371. #define FUNCTION_PROFILER(FILE, LABELNO) \
  372. fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
  373. /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
  374. the stack pointer does not matter. The value is tested only in
  375. functions that have frame pointers.
  376. No definition is equivalent to always zero. */
  377. /* #define EXIT_IGNORE_STACK */
  378. /* This macro generates the assembly code for function exit,
  379. on machines that need it. If FUNCTION_EPILOGUE is not defined
  380. then individual return instructions are generated for each
  381. return statement. Args are same as for FUNCTION_PROLOGUE.
  382. The function epilogue should not depend on the current stack pointer!
  383. It should use the frame pointer only. This is mandatory because
  384. of alloca; we also take advantage of it to omit stack adjustments
  385. before returning. */
  386. #define FUNCTION_EPILOGUE(FILE, SIZE) \
  387. { extern int current_function_pops_args; \
  388. extern int current_function_args_size; \
  389. register int regno; \
  390. register int nregs; \
  391. char used_regs_buf[32], *bufp = used_regs_buf; \
  392. int used_fregs_buf[8], *fbufp = used_fregs_buf; \
  393. extern char call_used_regs[]; \
  394. *fbufp++ = -2; \
  395. for (regno = 8; regno < 16; regno++) \
  396. if (regs_ever_live[regno] && !call_used_regs[regno]) { \
  397. *fbufp++ = regno; \
  398. } \
  399. fbufp--; \
  400. while (fbufp > used_fregs_buf) \
  401. { \
  402. if ((*fbufp & 1) && fbufp[0] == fbufp[-1] + 1) \
  403. { \
  404. fprintf (FILE, "\tmovl tos,f%d\n", fbufp[-1] - 8); \
  405. fbufp -= 2; \
  406. } \
  407. else fprintf (FILE, "\tmovf tos,f%d\n", *fbufp-- - 8); \
  408. } \
  409. for (regno = 0, nregs = 0; regno < 8; regno++) \
  410. if (regs_ever_live[regno] && ! call_used_regs[regno]) { \
  411. nregs++; \
  412. *bufp++ = 'r'; *bufp++ = regno+'0'; *bufp++ = ','; \
  413. } \
  414. if (bufp > used_regs_buf) --bufp; \
  415. *bufp = '\0'; \
  416. if (frame_pointer_needed) \
  417. fprintf (FILE, "\texit [%s]\n", used_regs_buf); \
  418. else if (nregs == 1) \
  419. fprintf (FILE, "\tmovd tos,%s\n", used_regs_buf); \
  420. else if (nregs) \
  421. fprintf (FILE, "\trestore [%s]\n", used_regs_buf); \
  422. if (current_function_pops_args && current_function_args_size) \
  423. fprintf (FILE, "\tret %d\n", current_function_args_size); \
  424. else fprintf (FILE, "\tret 0\n"); }
  425. /* If the memory address ADDR is relative to the frame pointer,
  426. correct it to be relative to the stack pointer instead.
  427. This is for when we don't use a frame pointer.
  428. ADDR should be a variable name. */
  429. #if 0
  430. #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
  431. { int offset = -1; \
  432. if (GET_CODE (ADDR) == REG && REGNO (ADDR) == FRAME_POINTER_REGNUM) \
  433. offset = 0; \
  434. else if (GET_CODE (ADDR) == PLUS && GET_CODE (XEXP (ADDR, 0)) == REG \
  435. && REGNO (XEXP (ADDR, 0)) == FRAME_POINTER_REGNUM \
  436. && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
  437. offset = INTVAL (XEXP (ADDR, 1)); \
  438. if (offset >= 0) \
  439. { int regno; \
  440. extern char call_used_regs[]; \
  441. for (regno = 0; regno < 8; regno++) \
  442. if (regs_ever_live[regno] && ! call_used_regs[regno]) \
  443. offset += 4; \
  444. offset -= 4; \
  445. ADDR = plus_constant (gen_rtx (REG, Pmode, STACK_POINTER_REGNUM), \
  446. offset + (DEPTH)); } }
  447. #else
  448. #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
  449. if (check_reg(ADDR, FRAME_POINTER_REGNUM)) { \
  450. register int regno, offset = (DEPTH) - 4; \
  451. extern char call_used_regs[]; \
  452. for (regno = 0; regno < 16; regno++) \
  453. if (regs_ever_live[regno] && ! call_used_regs[regno]) \
  454. offset += 4; \
  455. if (GET_CODE (ADDR) == REG && REGNO (ADDR) == FRAME_POINTER_REGNUM) \
  456. ADDR = plus_constant(stack_pointer_rtx, offset); \
  457. else if (GET_CODE(ADDR) == PLUS) { \
  458. register rtx a0 = XEXP(ADDR, 0); \
  459. if (GET_CODE(a0) == REG && REGNO(a0) == FRAME_POINTER_REGNUM) \
  460. if (GET_CODE(XEXP(ADDR, 1)) == CONST_INT) \
  461. ADDR = plus_constant(stack_pointer_rtx, \
  462. offset + INTVAL(XEXP(ADDR, 1))); \
  463. else \
  464. ADDR = plus_constant(gen_rtx(PLUS, Pmode, \
  465. stack_pointer_rtx, XEXP (ADDR, 1)), \
  466. offset); \
  467. else if (GET_CODE(a0) == MEM) { \
  468. register rtx a1 = XEXP(a0, 0); \
  469. if (GET_CODE(a1) == REG && REGNO(a1) == FRAME_POINTER_REGNUM) \
  470. ADDR = gen_rtx(PLUS, Pmode, \
  471. gen_rtx(MEM, Pmode, \
  472. plus_constant(stack_pointer_rtx, offset)), \
  473. XEXP(ADDR, 1)); \
  474. else if (GET_CODE(a1) == PLUS && GET_CODE(XEXP(a1, 0)) == REG \
  475. && REGNO(XEXP(a1, 0)) == FRAME_POINTER_REGNUM) \
  476. ADDR = gen_rtx(PLUS, Pmode, \
  477. gen_rtx(MEM, Pmode, \
  478. plus_constant(stack_pointer_rtx, \
  479. offset+INTVAL(XEXP(a1, 1)))),\
  480. XEXP(ADDR, 1)); \
  481. else \
  482. abort(); \
  483. } else if (GET_CODE(XEXP(ADDR, 1)) == MEM) { \
  484. register rtx a1 = XEXP(XEXP(ADDR, 1), 0); \
  485. if (GET_CODE(a1) == REG && REGNO(a1) == FRAME_POINTER_REGNUM) \
  486. ADDR = gen_rtx(PLUS, Pmode, \
  487. XEXP(ADDR, 0), \
  488. gen_rtx(MEM, Pmode, \
  489. plus_constant(stack_pointer_rtx, \
  490. offset))); \
  491. else if (GET_CODE(a1) == PLUS && GET_CODE(XEXP(a1, 0)) == REG \
  492. && REGNO(XEXP(a1, 0)) == FRAME_POINTER_REGNUM) \
  493. ADDR = gen_rtx(PLUS, Pmode, \
  494. XEXP(ADDR, 0), \
  495. gen_rtx(MEM, Pmode, \
  496. plus_constant(stack_pointer_rtx, \
  497. offset+INTVAL(XEXP(a1, 1)))));\
  498. else \
  499. abort(); \
  500. } else \
  501. abort(); \
  502. } else if (GET_CODE(ADDR) == MEM) { \
  503. register rtx a0 = XEXP(ADDR, 0); \
  504. if (GET_CODE (a0) == REG && REGNO (a0) == FRAME_POINTER_REGNUM) \
  505. ADDR = gen_rtx(MEM, Pmode, \
  506. plus_constant(stack_pointer_rtx, offset)); \
  507. else if (GET_CODE(a0) == PLUS && GET_CODE(XEXP(a0, 0)) == REG \
  508. && REGNO(XEXP(a0, 0)) == FRAME_POINTER_REGNUM \
  509. && GET_CODE(XEXP(a0, 1)) == CONST_INT) \
  510. ADDR = gen_rtx(MEM, Pmode, \
  511. plus_constant(stack_pointer_rtx, \
  512. offset + INTVAL(XEXP(a0, 1)))); \
  513. else \
  514. abort(); \
  515. } else \
  516. abort(); \
  517. }
  518. #endif
  519. /* Addressing modes, and classification of registers for them. */
  520. /* #define HAVE_POST_INCREMENT */
  521. /* #define HAVE_POST_DECREMENT */
  522. /* #define HAVE_PRE_DECREMENT */
  523. /* #define HAVE_PRE_INCREMENT */
  524. /* Macros to check register numbers against specific register classes. */
  525. /* These assume that REGNO is a hard or pseudo reg number.
  526. They give nonzero only if REGNO is a hard reg of the suitable class
  527. or a pseudo reg currently allocated to a suitable hard reg.
  528. Since they use reg_renumber, they are safe only once reg_renumber
  529. has been allocated, which happens in local-alloc.c. */
  530. /* note that FP and SP cannot be used as an index. What about PC? */
  531. #define REGNO_OK_FOR_INDEX_P(REGNO) \
  532. ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8)
  533. #define REGNO_OK_FOR_BASE_P(REGNO) \
  534. ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8 \
  535. || (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
  536. /* Maximum number of registers that can appear in a valid memory address. */
  537. #define MAX_REGS_PER_ADDRESS 2
  538. /* Recognize any constant value that is a valid address. */
  539. #define CONSTANT_ADDRESS_P(X) \
  540. (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
  541. || GET_CODE (X) == CONST \
  542. || (GET_CODE (X) == CONST_INT \
  543. && ((unsigned)INTVAL (X) >= 0xe0000000 \
  544. || (unsigned)INTVAL (X) < 0x20000000)))
  545. #define CONSTANT_ADDRESS_NO_LABEL_P(X) \
  546. (GET_CODE (X) == CONST_INT \
  547. && ((unsigned)INTVAL (X) >= 0xe0000000 \
  548. || (unsigned)INTVAL (X) < 0x20000000))
  549. /* Nonzero if the constant value X is a legitimate general operand.
  550. It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
  551. #define LEGITIMATE_CONSTANT_P(X) 1
  552. /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
  553. and check its validity for a certain class.
  554. We have two alternate definitions for each of them.
  555. The usual definition accepts all pseudo regs; the other rejects
  556. them unless they have been allocated suitable hard regs.
  557. The symbol REG_OK_STRICT causes the latter definition to be used.
  558. Most source files want to accept pseudo regs in the hope that
  559. they will get allocated to the class that the insn wants them to be in.
  560. Source files for reload pass need to be strict.
  561. After reload, it makes no difference, since pseudo regs have
  562. been eliminated by then. */
  563. #ifndef REG_OK_STRICT
  564. /* Nonzero if X is a hard reg that can be used as an index
  565. or if it is a pseudo reg. */
  566. #define REG_OK_FOR_INDEX_P(X) \
  567. (REGNO (X) < 8 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
  568. /* Nonzero if X is a hard reg that can be used as a base reg
  569. of if it is a pseudo reg. */
  570. #define REG_OK_FOR_BASE_P(X) (REGNO (X) < 8 || REGNO (X) >= FRAME_POINTER_REGNUM)
  571. /* Nonzero if X is a floating point reg or a pseudo reg. */
  572. #else
  573. /* Nonzero if X is a hard reg that can be used as an index. */
  574. #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
  575. /* Nonzero if X is a hard reg that can be used as a base reg. */
  576. #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
  577. #endif
  578. /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
  579. that is a valid memory address for an instruction.
  580. The MODE argument is the machine mode for the MEM expression
  581. that wants to use this address.
  582. The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
  583. /* 1 if X is an address that we could indirect through. */
  584. /***** NOTE ***** There is a bug in the Sequent assembler which fails
  585. to fixup addressing information for symbols used as offsets
  586. from registers which are not FP or SP (or SB or PC). This
  587. makes _x(fp) valid, while _x(r0) is invalid. */
  588. # define SEQUENT_HAS_FIXED_THEIR_BUG 0
  589. #define INDIRECTABLE_1_ADDRESS_P(X) \
  590. (CONSTANT_P (X) \
  591. || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
  592. || (GET_CODE (X) == PLUS \
  593. && GET_CODE (XEXP (X, 0)) == REG \
  594. && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
  595. && CONSTANT_ADDRESS_P (XEXP (X, 1))))
  596. #define MEM_REG(X) \
  597. ((GET_CODE (X) == REG && (REGNO (X) ^ 16) < 2) \
  598. || (GET_CODE (X) == SYMBOL_REF))
  599. #define INDIRECTABLE_2_ADDRESS_P(X) \
  600. (GET_CODE (X) == MEM \
  601. && (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
  602. || (GET_CODE (xfoo0) == PLUS \
  603. && MEM_REG (XEXP (xfoo0, 0)) \
  604. && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
  605. || CONSTANT_ADDRESS_P (xfoo0)))
  606. #define INDIRECTABLE_ADDRESS_P(X) \
  607. (INDIRECTABLE_1_ADDRESS_P(X) \
  608. || INDIRECTABLE_2_ADDRESS_P (X) \
  609. || (GET_CODE (X) == PLUS \
  610. && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1)) \
  611. && INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))))
  612. /* Go to ADDR if X is a valid address not using indexing.
  613. (This much is the easy part.) */
  614. #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
  615. { register rtx xfoob = (X); \
  616. if (GET_CODE (xfoob) == REG) goto ADDR; \
  617. if (INDIRECTABLE_1_ADDRESS_P(X)) goto ADDR; \
  618. if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
  619. if (GET_CODE (X) == PLUS) \
  620. if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
  621. if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
  622. goto ADDR; \
  623. }
  624. /* 1 if PROD is either a reg times size of mode MODE
  625. or just a reg, if MODE is just one byte. Actually, on the ns32k,
  626. since the index mode is independent of the operand size,
  627. we can match more stuff...
  628. This macro's expansion uses the temporary variables xfoo0, xfoo1
  629. and xfoo2 that must be declared in the surrounding context. */
  630. #define INDEX_TERM_P(PROD, MODE) \
  631. ((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
  632. || (GET_CODE (PROD) == MULT \
  633. && (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
  634. (GET_CODE (xfoo1) == CONST_INT \
  635. && GET_CODE (xfoo0) == REG \
  636. && FITS_INDEX_RANGE (INTVAL (xfoo1)) \
  637. && REG_OK_FOR_INDEX_P (xfoo0)))))
  638. #define FITS_INDEX_RANGE(X) \
  639. ((xfoo2 = (unsigned)(X)-1), \
  640. ((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
  641. #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
  642. { register rtx xfooy, xfooz, xfoo0, xfoo1; \
  643. unsigned xfoo2; \
  644. xfooy = X; \
  645. GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
  646. if (GET_CODE (xfooy) == PLUS) \
  647. { \
  648. if (GET_CODE (XEXP (xfooy, 1)) == CONST_INT \
  649. && GET_CODE (XEXP (xfooy, 0)) == PLUS) \
  650. xfooy = XEXP (xfooy, 0); \
  651. else if (GET_CODE (XEXP (xfooy, 0)) == CONST_INT \
  652. && GET_CODE (XEXP (xfooy, 1)) == PLUS) \
  653. xfooy = XEXP (xfooy, 1); \
  654. xfooz = XEXP (xfooy, 1); \
  655. if (INDEX_TERM_P (xfooz, MODE)) \
  656. { rtx t = XEXP (xfooy, 0); GO_IF_NONINDEXED_ADDRESS (t, ADDR); } \
  657. xfooz = XEXP (xfooy, 0); \
  658. if (INDEX_TERM_P (xfooz, MODE)) \
  659. { rtx t = XEXP (xfooy, 1); GO_IF_NONINDEXED_ADDRESS (t, ADDR); } \
  660. } \
  661. else if (INDEX_TERM_P (xfooy, MODE)) \
  662. goto ADDR; \
  663. else if (GET_CODE (xfooy) == PRE_DEC) \
  664. if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
  665. else abort (); \
  666. }
  667. /* Try machine-dependent ways of modifying an illegitimate address
  668. to be legitimate. If we find one, return the new, valid address.
  669. This macro is used in only one place: `memory_address' in explow.c.
  670. OLDX is the address as it was before break_out_memory_refs was called.
  671. In some cases it is useful to look at this to decide what needs to be done.
  672. MODE and WIN are passed so that this macro can use
  673. GO_IF_LEGITIMATE_ADDRESS.
  674. It is always safe for this macro to do nothing. It exists to recognize
  675. opportunities to optimize the output.
  676. For the ns32k, we do nothing */
  677. #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
  678. /* Go to LABEL if ADDR (a legitimate address expression)
  679. has an effect that depends on the machine mode it is used for.
  680. On the ns32k, only predecrement and postincrement address depend thus
  681. (the amount of decrement or increment being the length of the operand). */
  682. #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
  683. { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
  684. goto LABEL;}
  685. /* Specify the machine mode that this machine uses
  686. for the index in the tablejump instruction.
  687. Can do SImode, but HI mode is more efficient. */
  688. #define CASE_VECTOR_MODE HImode
  689. /* Define this if the tablejump instruction expects the table
  690. to contain offsets from the address of the table.
  691. Do not define this if the table should contain absolute addresses. */
  692. #define CASE_VECTOR_PC_RELATIVE
  693. /* Specify the tree operation to be used to convert reals to integers. */
  694. #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
  695. /* This is the kind of divide that is easiest to do in the general case. */
  696. #define EASY_DIV_EXPR TRUNC_DIV_EXPR
  697. /* Define this as 1 if `char' should by default be signed; else as 0. */
  698. #define DEFAULT_SIGNED_CHAR 1
  699. /* Max number of bytes we can move from memory to memory
  700. in one reasonably fast instruction. */
  701. #define MOVE_MAX 4
  702. /* Define this if zero-extension is slow (more than one real instruction). */
  703. /* #define SLOW_ZERO_EXTEND */
  704. /* Nonzero if access to memory by bytes is slow and undesirable. */
  705. #define SLOW_BYTE_ACCESS 0
  706. /* Define if shifts truncate the shift count
  707. which implies one can omit a sign-extension or zero-extension
  708. of a shift count. */
  709. /* #define SHIFT_COUNT_TRUNCATED */
  710. /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
  711. is done just by pretending it is already truncated. */
  712. #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
  713. /* We assume that the store-condition-codes instructions store 0 for false
  714. and some other value for true. This is the value stored for true. */
  715. #define STORE_FLAG_VALUE 1
  716. /* Specify the machine mode that pointers have.
  717. After generation of rtl, the compiler makes no further distinction
  718. between pointers and any other objects of this machine mode. */
  719. #define Pmode SImode
  720. /* A function address in a call instruction
  721. is a byte address (for indexing purposes)
  722. so give the MEM rtx a byte's mode. */
  723. #define FUNCTION_MODE QImode
  724. /* Compute the cost of computing a constant rtl expression RTX
  725. whose rtx-code is CODE. The body of this macro is a portion
  726. of a switch statement. If the code is computed here,
  727. return it with a return statement. Otherwise, break from the switch. */
  728. #define CONST_COSTS(RTX,CODE) \
  729. case CONST_INT: \
  730. if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0; \
  731. if (INTVAL (RTX) < 0x4000 && INTVAL (RTX) >= -0x4000) \
  732. return 1; \
  733. case CONST: \
  734. case LABEL_REF: \
  735. case SYMBOL_REF: \
  736. return 3; \
  737. case CONST_DOUBLE: \
  738. return 5;
  739. /* Tell final.c how to eliminate redundant test instructions. */
  740. /* Here we define machine-dependent flags and fields in cc_status
  741. (see `conditions.h'). */
  742. /* This bit means that what ought to be in the Z bit
  743. should be tested in the F bit. */
  744. #define CC_Z_IN_F 040
  745. /* This bit means that what ought to be in the Z bit
  746. is complemented in the F bit. */
  747. #define CC_Z_IN_NOT_F 0100
  748. /* Store in cc_status the expressions
  749. that the condition codes will describe
  750. after execution of an instruction whose pattern is EXP.
  751. Do not alter them if the instruction would not alter the cc's. */
  752. #define NOTICE_UPDATE_CC(EXP) \
  753. { if (GET_CODE (EXP) == SET) \
  754. { if (GET_CODE (SET_DEST (EXP)) == CC0) \
  755. { cc_status.flags = 0; \
  756. cc_status.value1 = SET_DEST (EXP); \
  757. cc_status.value2 = SET_SRC (EXP); \
  758. } \
  759. else if (GET_CODE (SET_SRC (EXP)) == CALL) \
  760. { CC_STATUS_INIT; } \
  761. else if (GET_CODE (SET_DEST (EXP)) == REG) \
  762. { if (cc_status.value1 \
  763. && reg_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
  764. cc_status.value1 = 0; \
  765. if (cc_status.value2 \
  766. && reg_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
  767. cc_status.value2 = 0; \
  768. } \
  769. else if (GET_CODE (SET_DEST (EXP)) == MEM) \
  770. { CC_STATUS_INIT; } \
  771. } \
  772. else if (GET_CODE (EXP) == PARALLEL \
  773. && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
  774. { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
  775. { cc_status.flags = 0; \
  776. cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
  777. cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
  778. } \
  779. else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
  780. { if (cc_status.value1 \
  781. && reg_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
  782. cc_status.value1 = 0; \
  783. if (cc_status.value2 \
  784. && reg_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
  785. cc_status.value2 = 0; \
  786. } \
  787. else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
  788. { CC_STATUS_INIT; } \
  789. } \
  790. else if (GET_CODE (EXP) == CALL) \
  791. { /* all bets are off */ CC_STATUS_INIT; } \
  792. else { /* nothing happens? CC_STATUS_INIT; */} \
  793. if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
  794. && cc_status.value2 \
  795. && reg_mentioned_p (cc_status.value1, cc_status.value2)) \
  796. printf ("here!\n", cc_status.value2 = 0); \
  797. }
  798. #define OUTPUT_JUMP(NORMAL, NO_OV) \
  799. { if (cc_status.flags & CC_NO_OVERFLOW) \
  800. return NO_OV; \
  801. return NORMAL; }
  802. /* Control the assembler format that we output. */
  803. /* Output at beginning of assembler file. */
  804. #define ASM_FILE_START "#NO_APP\n"
  805. /* Output to assembler file text saying following lines
  806. may contain character constants, extra white space, comments, etc. */
  807. #define ASM_APP_ON "#APP\n"
  808. /* Output to assembler file text saying following lines
  809. no longer contain unusual constructs. */
  810. #define ASM_APP_OFF "#NO_APP\n"
  811. /* Output before read-only data. */
  812. #define TEXT_SECTION_ASM_OP ".text"
  813. /* Output before writable data. */
  814. #define DATA_SECTION_ASM_OP ".data"
  815. /* How to refer to registers in assembler output.
  816. This sequence is indexed by compiler's hard-register-number (see above). */
  817. #define REGISTER_NAMES \
  818. {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
  819. "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
  820. "fp", "sp", "sb", "pc"}
  821. /* How to renumber registers for dbx and gdb.
  822. NS32000 may need more change in the numeration. */
  823. #define DBX_REGISTER_NUMBER(REGNO) ((REGNO < 8) ? (REGNO)+4 : (REGNO))
  824. /* This is how to output the definition of a user-level label named NAME,
  825. such as the label on a static function or variable NAME. */
  826. #define ASM_OUTPUT_LABEL(FILE,NAME) \
  827. do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
  828. /* This is how to output a command to make the user-level label named NAME
  829. defined for reference from other files. */
  830. #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
  831. do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
  832. /* This is how to output a reference to a user-level label named NAME.
  833. `assemble_name' uses this. */
  834. #define ASM_OUTPUT_LABELREF(FILE,NAME) \
  835. fprintf (FILE, "_%s", NAME)
  836. /* This is how to output an internal numbered label where
  837. PREFIX is the class of label and NUM is the number within the class. */
  838. #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
  839. fprintf (FILE, "%s%d:\n", PREFIX, NUM)
  840. /* This is how to store into the string LABEL
  841. the symbol_ref name of an internal numbered label where
  842. PREFIX is the class of label and NUM is the number within the class.
  843. This is suitable for output with `assemble_name'. */
  844. #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
  845. sprintf (LABEL, "*%s%d", PREFIX, NUM)
  846. /* This is how to output an assembler line defining a `double' constant. */
  847. #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
  848. fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
  849. /* This is how to output an assembler line defining a `float' constant. */
  850. #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
  851. fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
  852. /* This is how to output an assembler line defining an `int' constant. */
  853. #define ASM_OUTPUT_INT(FILE,VALUE) \
  854. ( fprintf (FILE, "\t.long "), \
  855. output_addr_const (FILE, (VALUE)), \
  856. fprintf (FILE, "\n"))
  857. /* Likewise for `char' and `short' constants. */
  858. #define ASM_OUTPUT_SHORT(FILE,VALUE) \
  859. ( fprintf (FILE, "\t.word "), \
  860. output_addr_const (FILE, (VALUE)), \
  861. fprintf (FILE, "\n"))
  862. #define ASM_OUTPUT_CHAR(FILE,VALUE) \
  863. ( fprintf (FILE, "\t.byte "), \
  864. output_addr_const (FILE, (VALUE)), \
  865. fprintf (FILE, "\n"))
  866. /* This is how to output an assembler line for a numeric constant byte. */
  867. #define ASM_OUTPUT_BYTE(FILE,VALUE) \
  868. fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
  869. /* This is how to output an element of a case-vector that is absolute.
  870. (The 68000 does not use such vectors,
  871. but we must define this macro anyway.) */
  872. #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
  873. fprintf (FILE, "\t.long L%d\n", VALUE)
  874. /* This is how to output an element of a case-vector that is relative. */
  875. /* ** Notice that the second element is LI format! */
  876. #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
  877. fprintf (FILE, "\t.word L%d-LI%d\n", VALUE, REL)
  878. /* This is how to output an assembler line
  879. that says to advance the location counter
  880. to a multiple of 2**LOG bytes. */
  881. #define ASM_OUTPUT_ALIGN(FILE,LOG) \
  882. fprintf (FILE, "\t.align %d\n", (LOG))
  883. #define ASM_OUTPUT_SKIP(FILE,SIZE) \
  884. fprintf (FILE, "\t.space %d\n", (SIZE))
  885. /* This says how to output an assembler line
  886. to define a global common symbol. */
  887. #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE) \
  888. ( fputs (".comm ", (FILE)), \
  889. assemble_name ((FILE), (NAME)), \
  890. fprintf ((FILE), ",%d\n", (SIZE)))
  891. /* This says how to output an assembler line
  892. to define a local common symbol. */
  893. #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE) \
  894. ( fputs (".lcomm ", (FILE)), \
  895. assemble_name ((FILE), (NAME)), \
  896. fprintf ((FILE), ",%d\n", (SIZE)))
  897. /* Store in OUTPUT a string (made with alloca) containing
  898. an assembler-name for a local static variable named NAME.
  899. LABELNO is an integer which is different for each call. */
  900. #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
  901. ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
  902. sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
  903. /* Define the parentheses used to group arithmetic operations
  904. in assembler code. */
  905. #define ASM_OPEN_PAREN "("
  906. #define ASM_CLOSE_PAREN ")"
  907. /* Define results of standard character escape sequences. */
  908. #define TARGET_BELL 007
  909. #define TARGET_BS 010
  910. #define TARGET_TAB 011
  911. #define TARGET_NEWLINE 012
  912. #define TARGET_VT 013
  913. #define TARGET_FF 014
  914. #define TARGET_CR 015
  915. /* Print an instruction operand X on file FILE.
  916. CODE is the code from the %-spec that requested printing this operand;
  917. if `%z3' was used to print operand 3, then CODE is 'z'. */
  918. /* %$ means print the prefix for an immediate operand. */
  919. #define PRINT_OPERAND(FILE, X, CODE) \
  920. { if (CODE == '$') fprintf (FILE, "$"); \
  921. else if (GET_CODE (X) == REG) \
  922. fprintf (FILE, "%s", reg_name [REGNO (X)]); \
  923. else if (GET_CODE (X) == MEM) \
  924. output_address (XEXP (X, 0)); \
  925. else if (GET_CODE (X) == CONST_DOUBLE) \
  926. if (GET_MODE (X) == DFmode) \
  927. { union { double d; int i[2]; } u; \
  928. u.i[0] = XINT (X, 0); u.i[1] = XINT (X, 1); \
  929. fprintf (FILE, "$0d%.20e", u.d); } \
  930. else fprintf (FILE, "$0f%.20e", XINT (X, 0)); \
  931. else { putc ('$', FILE); output_addr_const (FILE, X); }}
  932. /* Print a memory operand whose address is X, on file FILE. */
  933. #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
  934. { register rtx reg1, reg2, breg, ireg; \
  935. register rtx addr = ADDR; \
  936. rtx offset; \
  937. int mem=0, multval, offset_printed; \
  938. char reg1_str[256], reg2_str[256]; \
  939. retry: \
  940. switch (GET_CODE (addr)) \
  941. { \
  942. case MEM: \
  943. fprintf (FILE, "0("); \
  944. addr = XEXP (addr, 0); \
  945. mem =1; \
  946. goto retry; \
  947. case REG: \
  948. fprintf (FILE, "0(%s)", reg_name [REGNO (addr)]); \
  949. break; \
  950. case PRE_DEC: \
  951. if (REGNO(XEXP(addr, 0)) != STACK_POINTER_REGNUM) \
  952. fprintf(FILE, ")1:%d", REGNO(XEXP(addr,0))); \
  953. else fprintf (FILE, "tos", reg_name [REGNO (XEXP (addr, 0))]); \
  954. break; \
  955. case POST_INC: \
  956. if (REGNO(XEXP(addr, 0)) != STACK_POINTER_REGNUM) \
  957. fprintf(FILE, ")2:%d", REGNO(XEXP(addr,0))); \
  958. else fprintf (FILE, "tos", reg_name [REGNO (XEXP (addr, 0))]); \
  959. break; \
  960. case MULT: \
  961. reg1 = XEXP (addr, 0); /* [rX:Y] */ \
  962. reg2 = XEXP (addr, 1); /* CONST/REG */ \
  963. if (GET_CODE (reg1) == CONST_INT && GET_CODE(reg2) == REG) { \
  964. reg1 = reg2; \
  965. reg2 = XEXP (addr, 0); /* [rX:Y] */ \
  966. } else \
  967. if (GET_CODE (reg2) != CONST_INT || \
  968. GET_CODE (reg1) != REG) { \
  969. abort(); \
  970. } \
  971. fprintf (FILE, "0[%s:%c]", \
  972. reg_name[ REGNO(reg1) ], \
  973. "XbwXdXXXq"[INTVAL (reg2)]); \
  974. break; \
  975. case PLUS: \
  976. reg1 = 0; reg2 = 0; \
  977. ireg = 0; breg = 0; \
  978. offset = 0; \
  979. multval = 0; \
  980. reg1_str[0] = 0; reg2_str[0] = 0; \
  981. offset_printed = 0; \
  982. if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) \
  983. || GET_CODE (XEXP (addr, 0)) == MEM) \
  984. { \
  985. /* CONST / MEM(PLUS((REG)(CONST))) */ \
  986. offset = XEXP (addr, 0); \
  987. /* (REG) / PLUS((REG)(CONST)) / MULT((REG)(CONST)) */ \
  988. addr = XEXP (addr, 1); \
  989. } \
  990. else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) \
  991. || GET_CODE (XEXP (addr, 1)) == MEM) \
  992. { \
  993. /* CONST / MEM(PLUS((REG)(CONST))) */ \
  994. offset = XEXP (addr, 1); \
  995. /* (REG) / PLUS((REG)(CONST)) / MULT((REG)(CONST)) */ \
  996. addr = XEXP (addr, 0); \
  997. } \
  998. if (offset != 0) { \
  999. if (GET_CODE (offset) == MEM) { \
  1000. offset = XEXP (offset, 0); /* skip MEM */ \
  1001. switch (GET_CODE (offset)) { \
  1002. case REG: \
  1003. sprintf (reg1_str, "(%s)", \
  1004. reg_name[REGNO (offset)]); \
  1005. offset = 0; \
  1006. break; \
  1007. case PLUS: \
  1008. if (!CONSTANT_ADDRESS_P (XEXP (offset, 1))) { \
  1009. fprintf (FILE, \
  1010. "PROGRAM in disorder PRINT_ADDR, PLUS, PLUS\n"); \
  1011. print_rtl(FILE, offset); \
  1012. exit (1); \
  1013. } \
  1014. if (GET_CODE (XEXP(offset,0)) != REG) { \
  1015. fprintf (FILE, \
  1016. "PROGRAM in disorder PRINT_ADDR, PLUS, REG\n"); \
  1017. print_rtl(FILE, offset); \
  1018. exit (1); \
  1019. } \
  1020. sprintf (reg1_str, "(%s))", \
  1021. reg_name[REGNO (XEXP(offset,0))]); \
  1022. offset = XEXP (offset, 1); \
  1023. break; \
  1024. default: \
  1025. abort(); \
  1026. } \
  1027. } else { /* !MEM */ \
  1028. if (!CONSTANT_ADDRESS_P (offset)) { \
  1029. abort(); \
  1030. } \
  1031. output_addr_const (FILE, offset); \
  1032. offset_printed = 1; \
  1033. offset = 0; \
  1034. } \
  1035. } \
  1036. \
  1037. if (GET_CODE (addr) == PLUS) { \
  1038. if (GET_CODE (XEXP (addr, 0)) == MULT) \
  1039. { \
  1040. reg1 = XEXP (addr, 0); /* [rX:Y] */ \
  1041. addr = XEXP (addr, 1); /* CONST/REG */ \
  1042. if (GET_CODE (XEXP (reg1, 1)) != CONST_INT || \
  1043. GET_CODE (XEXP (reg1, 0)) != REG) { \
  1044. abort(); \
  1045. } \
  1046. sprintf (reg2_str, "[%s:%c]", \
  1047. reg_name[ REGNO(XEXP (reg1, 0)) ], \
  1048. "XbwXdXXXq"[INTVAL (XEXP (reg1, 1))]); \
  1049. reg1 = 0; \
  1050. } \
  1051. else if (GET_CODE (XEXP (addr, 1)) == MULT) \
  1052. { \
  1053. reg1 = XEXP (addr, 1); /* [rX:Y] */ \
  1054. addr = XEXP (addr, 0); /* CONST */ \
  1055. if (GET_CODE (XEXP (reg1, 1)) != CONST_INT || \
  1056. GET_CODE (XEXP (reg1, 0)) != REG) { \
  1057. abort(); \
  1058. } \
  1059. sprintf (reg2_str, "[%s:%c]", \
  1060. reg_name[ REGNO(XEXP (reg1, 0)) ], \
  1061. "XbwXdXXXq"[INTVAL (XEXP (reg1, 1))]); \
  1062. reg1 = 0; \
  1063. } \
  1064. else if (GET_CODE (XEXP (addr, 0)) == REG) \
  1065. { \
  1066. sprintf (reg2_str, "[%s:b]", \
  1067. reg_name[ REGNO(XEXP (addr, 0)) ]); \
  1068. addr = XEXP (addr, 1); /* CONST / REG */ \
  1069. } \
  1070. else if (GET_CODE (XEXP (addr, 1)) == REG) \
  1071. { \
  1072. sprintf (reg2_str, "[%s:b]", \
  1073. reg_name[ REGNO(XEXP (addr, 1)) ]); \
  1074. addr = XEXP (addr, 0); /* CONST / REG */ \
  1075. } \
  1076. } \
  1077. if (addr) \
  1078. switch (GET_CODE (addr)) { \
  1079. case MULT: \
  1080. if(*reg2_str) { \
  1081. fprintf (FILE, \
  1082. "PROGRAM in disorder PRINT_ADDR, INDEX, two mults\n"); \
  1083. print_rtl(FILE, addr); \
  1084. exit (1); \
  1085. } \
  1086. reg1 = XEXP (addr, 0); /* [rX:Y] */ \
  1087. addr = XEXP (addr, 1); /* CONST */ \
  1088. if (GET_CODE (addr) != CONST_INT) { \
  1089. fprintf (FILE, \
  1090. "PROGRAM in disorder PRINT_ADDR, INDEX, !CONS3 (%d)\n", \
  1091. GET_CODE (addr)); \
  1092. print_rtl(FILE, addr); \
  1093. exit (1); \
  1094. } \
  1095. sprintf (reg2_str, "[%s:%c]", reg_name[ REGNO(reg1) ], \
  1096. "XbwXdXXXq"[INTVAL (addr)]); \
  1097. break; \
  1098. case REG: \
  1099. if (!*reg1_str) { \
  1100. if (offset || offset_printed) \
  1101. sprintf (reg1_str, "(%s)", reg_name[REGNO (addr)]); \
  1102. else \
  1103. sprintf (reg1_str, "0(%s)", reg_name[REGNO (addr)]); \
  1104. } else if (!*reg2_str) \
  1105. sprintf (reg2_str, "[%s:b]", \
  1106. reg_name[REGNO (addr)]); \
  1107. else { \
  1108. abort(); \
  1109. } \
  1110. break; \
  1111. default: \
  1112. if (offset_printed) \
  1113. fprintf (FILE, "+"); \
  1114. output_addr_const (FILE, addr); \
  1115. offset_printed ++; \
  1116. } \
  1117. if (offset) { \
  1118. if(!offset_printed) \
  1119. fputc ('0', FILE); \
  1120. fputc ('(', FILE); \
  1121. output_addr_const (FILE, offset); \
  1122. } \
  1123. if (*reg1_str) \
  1124. fprintf (FILE, "%s", reg1_str); \
  1125. if (*reg2_str) \
  1126. fprintf (FILE, "%s", reg2_str); \
  1127. break; \
  1128. default: \
  1129. output_addr_const (FILE, addr); \
  1130. } \
  1131. if(mem) \
  1132. fprintf(FILE,")");}
  1133. /*
  1134. Local variables:
  1135. version-control: t
  1136. End:
  1137. */