12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376 |
- /* Definitions of target machine for GNU compiler. NS32000 version.
- Copyright (C) 1988 Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@mcc.com)
- This file is part of GNU CC.
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY. No author or distributor
- accepts responsibility to anyone for the consequences of using it
- or for whether it serves any particular purpose or works at all,
- unless he says so in writing. Refer to the GNU CC General Public
- License for full details.
- Everyone is granted permission to copy, modify and redistribute
- GNU CC, but only under the conditions described in the
- GNU CC General Public License. A copy of this license is
- supposed to have been given to you along with GNU CC so you
- can know your rights and responsibilities. It should be in a
- file named COPYING. Among other things, the copyright notice
- and this notice must be preserved on all copies. */
- /* Note that some other tm- files include this one and then override
- many of the definitions that relate to assembler syntax. */
- /* Names to predefine in the preprocessor for this target machine. */
- #define CPP_PREDEFINES "-Dns32000 -Dunix"
- /* Print subsidiary information on the compiler version in use. */
- #define TARGET_VERSION printf (" (32000, National syntax)");
- /* Run-time compilation parameters selecting different hardware subsets. */
- extern int target_flags;
- /* Macros used in the machine description to test the flags. */
- /* Compile 32081 insns for floating point (not library calls). */
- #define TARGET_32081 (target_flags & 1)
- /* Compile using rtd insn calling sequence.
- This will not work unless you use prototypes at least
- for all functions that can take varying numbers of args. */
- #define TARGET_RTD (target_flags & 2)
- /* Compile passing first two args in regs 0 and 1. */
- #define TARGET_REGPARM (target_flags & 4)
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
- #define TARGET_SWITCHES \
- { { "32081", 1}, \
- { "soft-float", -1}, \
- { "rtd", 2}, \
- { "nortd", -2}, \
- { "regparm", 4}, \
- { "noregparm", -4}, \
- { "", TARGET_DEFAULT}}
- /* target machine storage layout */
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is not true on the ns32k. */
- /* #define BITS_BIG_ENDIAN */
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is not true on the ns32k. */
- /* #define BYTES_BIG_ENDIAN */
- /* Define this if most significant word of a multiword number is numbered. */
- /* This is not true on the ns32k. */
- /* #define WORDS_BIG_ENDIAN */
- /* Number of bits in an addressible storage unit */
- #define BITS_PER_UNIT 8
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 32000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
- /* Allocation boundary (in *bits*) for storing pointers in memory. */
- #define POINTER_BOUNDARY 16
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 32
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 32
- /* Every structure's size must be a multiple of this. */
- #define STRUCTURE_SIZE_BOUNDARY 8
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 32
- /* Define this if move instructions will actually fail to work
- when given unaligned data. National claims that the NS32032
- works without strict alignment, but rumor has it that operands
- crossing a page boundary cause unpredictable results. */
- #define STRICT_ALIGNMENT
- /* Standard register usage. */
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers. */
- #define FIRST_PSEUDO_REGISTER 18
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the ns32k, these are the FP, SP, (SB and PC are not included here). */
- #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1}
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 0, 0, 0, 0, \
- 1, 1}
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
- On the ns32k, all registers are 32 bits long. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 32000, all registers can hold all modes, except that
- double precision floats (and double ints) must fall on even-register
- boundaries */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((MODE) == DFmode \
- ? (((REGNO) & 1) == 0 \
- && (TARGET_32081 ? (REGNO) < 16 : (REGNO) < 8)) \
- : (MODE) == DImode ? ((REGNO) & 1) == 0 && (REGNO) < 8 \
- : 1)
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (((MODE1) == DFmode || (MODE1) == DImode) == ((MODE2) == DFmode || (MODE2) == DImode))
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
- /* NS32000 pc is not overloaded on a register. */
- /* #define PC_REGNUM */
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 17
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 16
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 0
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 16
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 1
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM 2
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, GEN_AND_FLOAT_REGS,
- GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
- /* Give names of register classes as strings for dump file. */
- #define REG_CLASS_NAMES \
- {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "GEN_AND_FLOAT_REGS", "GEN_AND_MEM_REGS", "ALL_REGS" }
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
- #define REG_CLASS_CONTENTS {0, 0x00ff, 0xff00, 0xffff, 0x300ff, 0x3ffff, }
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) < 8 ? GENERAL_REGS : (REGNO) < 16 ? FLOAT_REGS : ALL_REGS)
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS GEN_AND_MEM_REGS
- /* Get reg_class from a letter such as appears in the machine description. */
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'r' ? GENERAL_REGS \
- : (C) == 'f' ? FLOAT_REGS \
- : (C) == 'x' ? GEN_AND_MEM_REGS \
- : NO_REGS)
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
- On the ns32k, these letters are used as follows:
- I : Matches integers which are valid shift amounts for scaled indexing.
- These are 0, 1, 2, 3 for byte, word, double, and quadword.
- J : Matches integers which fit a "quick" operand. */
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (0 <= (VALUE) && (VALUE) <= 3) : \
- (C) == 'J' ? (-8 <= (VALUE) && (VALUE) <= 7) : 0)
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
- #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On the 32000, this is the size of MODE in words */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
- /* Stack layout; function entry, exit and calling. */
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the 32000, sp@- in a byte insn really pushes a BYTE. */
- #define PUSH_ROUNDING(BYTES) (BYTES)
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET 8
- /* Value is 1 if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- On the 32000, the RET insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RET can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RET is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args. */
- #define RETURN_POPS_ARGS(FUNTYPE) \
- (TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
- && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
- || TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) == void_type_node))
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
- /* On the 32000 the return value is in R0,
- or perhaps in F0 is there is fp support. */
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- (TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_32081 \
- ? gen_rtx (REG, TYPE_MODE (VALTYPE), 8) \
- : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
- /* On the 32000 the return value is in R0,
- or perhaps F0 is there is fp support. */
- #define LIBCALL_VALUE(MODE) \
- (((MODE) == DFmode || (MODE) == SFmode) && TARGET_32081 \
- ? gen_rtx (REG, MODE, 8) \
- : gen_rtx (REG, MODE, 0))
- /* 1 if N is a possible register number for a function value.
- On the 32000, R0 and F0 are the only registers thus used. */
- #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
- /* 1 if N is a possible register number for function argument passing.
- On the 32000, no registers are used in this way. */
- #define FUNCTION_ARG_REGNO_P(N) 0
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
- On the ns32k, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
- #define CUMULATIVE_ARGS int
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
- On the ns32k, the offset starts at 0. */
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE) \
- ((CUM) = 0)
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
- /* On the 32000 all args are pushed, except if -mregparm is specified
- then the first two words of arguments are passed in r0, r1.
- *NOTE* -mregparm does not work.
- It exists only to test register calling conventions. */
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8 \
- && 8 < ((CUM) + ((MODE) == BLKmode \
- ? int_size_in_bytes (TYPE) \
- : GET_MODE_SIZE (MODE)))) \
- ? 2 - (CUM) / 4 : 0)
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- { register int regno; \
- register int nregs; \
- char used_regs_buf[32], *bufp = used_regs_buf; \
- int used_fregs_buf[8], *fbufp = used_fregs_buf; \
- extern char call_used_regs[]; \
- for (regno = 0, nregs = 0; regno < 8; regno++) \
- if (regs_ever_live[regno] && !call_used_regs[regno]) { \
- nregs += 1; \
- *bufp++ = 'r'; *bufp++ = regno+'0'; *bufp++ = ','; \
- } \
- for (; regno < 16; regno++) \
- if (regs_ever_live[regno] && !call_used_regs[regno]) { \
- *fbufp++ = regno; \
- } \
- if (bufp > used_regs_buf) --bufp; \
- *bufp = '\0'; \
- if (frame_pointer_needed) \
- fprintf (FILE, "\tenter [%s],%d\n", used_regs_buf,SIZE); \
- else if (nregs == 1) \
- fprintf (FILE, "\tmovd %s,tos\n", used_regs_buf); \
- else if (nregs) fprintf (FILE, "\tsave [%s]\n", used_regs_buf); \
- *fbufp = -1; \
- fbufp = used_fregs_buf; \
- while (*fbufp >= 0) \
- { \
- if ((*fbufp & 1) || (fbufp[0] != fbufp[1] - 1)) \
- fprintf (FILE, "\tmovf f%d,tos\n", *fbufp++ - 8); \
- else \
- { \
- fprintf (FILE, "\tmovl f%d,tos\n", fbufp[0] - 8); \
- fbufp += 2; \
- } \
- } \
- }
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry.
- THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
- /* #define EXIT_IGNORE_STACK */
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- { extern int current_function_pops_args; \
- extern int current_function_args_size; \
- register int regno; \
- register int nregs; \
- char used_regs_buf[32], *bufp = used_regs_buf; \
- int used_fregs_buf[8], *fbufp = used_fregs_buf; \
- extern char call_used_regs[]; \
- *fbufp++ = -2; \
- for (regno = 8; regno < 16; regno++) \
- if (regs_ever_live[regno] && !call_used_regs[regno]) { \
- *fbufp++ = regno; \
- } \
- fbufp--; \
- while (fbufp > used_fregs_buf) \
- { \
- if ((*fbufp & 1) && fbufp[0] == fbufp[-1] + 1) \
- { \
- fprintf (FILE, "\tmovl tos,f%d\n", fbufp[-1] - 8); \
- fbufp -= 2; \
- } \
- else fprintf (FILE, "\tmovf tos,f%d\n", *fbufp-- - 8); \
- } \
- for (regno = 0, nregs = 0; regno < 8; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) { \
- nregs++; \
- *bufp++ = 'r'; *bufp++ = regno+'0'; *bufp++ = ','; \
- } \
- if (bufp > used_regs_buf) --bufp; \
- *bufp = '\0'; \
- if (frame_pointer_needed) \
- fprintf (FILE, "\texit [%s]\n", used_regs_buf); \
- else if (nregs == 1) \
- fprintf (FILE, "\tmovd tos,%s\n", used_regs_buf); \
- else if (nregs) \
- fprintf (FILE, "\trestore [%s]\n", used_regs_buf); \
- if (current_function_pops_args && current_function_args_size) \
- fprintf (FILE, "\tret %d\n", current_function_args_size); \
- else fprintf (FILE, "\tret 0\n"); }
- /* If the memory address ADDR is relative to the frame pointer,
- correct it to be relative to the stack pointer instead.
- This is for when we don't use a frame pointer.
- ADDR should be a variable name. */
- #if 0
- #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
- { int offset = -1; \
- if (GET_CODE (ADDR) == REG && REGNO (ADDR) == FRAME_POINTER_REGNUM) \
- offset = 0; \
- else if (GET_CODE (ADDR) == PLUS && GET_CODE (XEXP (ADDR, 0)) == REG \
- && REGNO (XEXP (ADDR, 0)) == FRAME_POINTER_REGNUM \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (ADDR, 1)); \
- if (offset >= 0) \
- { int regno; \
- extern char call_used_regs[]; \
- for (regno = 0; regno < 8; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- offset -= 4; \
- ADDR = plus_constant (gen_rtx (REG, Pmode, STACK_POINTER_REGNUM), \
- offset + (DEPTH)); } }
- #else
- #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
- if (check_reg(ADDR, FRAME_POINTER_REGNUM)) { \
- register int regno, offset = (DEPTH) - 4; \
- extern char call_used_regs[]; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- if (GET_CODE (ADDR) == REG && REGNO (ADDR) == FRAME_POINTER_REGNUM) \
- ADDR = plus_constant(stack_pointer_rtx, offset); \
- else if (GET_CODE(ADDR) == PLUS) { \
- register rtx a0 = XEXP(ADDR, 0); \
- if (GET_CODE(a0) == REG && REGNO(a0) == FRAME_POINTER_REGNUM) \
- if (GET_CODE(XEXP(ADDR, 1)) == CONST_INT) \
- ADDR = plus_constant(stack_pointer_rtx, \
- offset + INTVAL(XEXP(ADDR, 1))); \
- else \
- ADDR = plus_constant(gen_rtx(PLUS, Pmode, \
- stack_pointer_rtx, XEXP (ADDR, 1)), \
- offset); \
- else if (GET_CODE(a0) == MEM) { \
- register rtx a1 = XEXP(a0, 0); \
- if (GET_CODE(a1) == REG && REGNO(a1) == FRAME_POINTER_REGNUM) \
- ADDR = gen_rtx(PLUS, Pmode, \
- gen_rtx(MEM, Pmode, \
- plus_constant(stack_pointer_rtx, offset)), \
- XEXP(ADDR, 1)); \
- else if (GET_CODE(a1) == PLUS && GET_CODE(XEXP(a1, 0)) == REG \
- && REGNO(XEXP(a1, 0)) == FRAME_POINTER_REGNUM) \
- ADDR = gen_rtx(PLUS, Pmode, \
- gen_rtx(MEM, Pmode, \
- plus_constant(stack_pointer_rtx, \
- offset+INTVAL(XEXP(a1, 1)))),\
- XEXP(ADDR, 1)); \
- else \
- abort(); \
- } else if (GET_CODE(XEXP(ADDR, 1)) == MEM) { \
- register rtx a1 = XEXP(XEXP(ADDR, 1), 0); \
- if (GET_CODE(a1) == REG && REGNO(a1) == FRAME_POINTER_REGNUM) \
- ADDR = gen_rtx(PLUS, Pmode, \
- XEXP(ADDR, 0), \
- gen_rtx(MEM, Pmode, \
- plus_constant(stack_pointer_rtx, \
- offset))); \
- else if (GET_CODE(a1) == PLUS && GET_CODE(XEXP(a1, 0)) == REG \
- && REGNO(XEXP(a1, 0)) == FRAME_POINTER_REGNUM) \
- ADDR = gen_rtx(PLUS, Pmode, \
- XEXP(ADDR, 0), \
- gen_rtx(MEM, Pmode, \
- plus_constant(stack_pointer_rtx, \
- offset+INTVAL(XEXP(a1, 1)))));\
- else \
- abort(); \
- } else \
- abort(); \
- } else if (GET_CODE(ADDR) == MEM) { \
- register rtx a0 = XEXP(ADDR, 0); \
- if (GET_CODE (a0) == REG && REGNO (a0) == FRAME_POINTER_REGNUM) \
- ADDR = gen_rtx(MEM, Pmode, \
- plus_constant(stack_pointer_rtx, offset)); \
- else if (GET_CODE(a0) == PLUS && GET_CODE(XEXP(a0, 0)) == REG \
- && REGNO(XEXP(a0, 0)) == FRAME_POINTER_REGNUM \
- && GET_CODE(XEXP(a0, 1)) == CONST_INT) \
- ADDR = gen_rtx(MEM, Pmode, \
- plus_constant(stack_pointer_rtx, \
- offset + INTVAL(XEXP(a0, 1)))); \
- else \
- abort(); \
- } else \
- abort(); \
- }
- #endif
- /* Addressing modes, and classification of registers for them. */
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
- /* #define HAVE_PRE_DECREMENT */
- /* #define HAVE_PRE_INCREMENT */
- /* Macros to check register numbers against specific register classes. */
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
- /* note that FP and SP cannot be used as an index. What about PC? */
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8 \
- || (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
- /* Maximum number of registers that can appear in a valid memory address. */
- #define MAX_REGS_PER_ADDRESS 2
- /* Recognize any constant value that is a valid address. */
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST \
- || (GET_CODE (X) == CONST_INT \
- && ((unsigned)INTVAL (X) >= 0xe0000000 \
- || (unsigned)INTVAL (X) < 0x20000000)))
- #define CONSTANT_ADDRESS_NO_LABEL_P(X) \
- (GET_CODE (X) == CONST_INT \
- && ((unsigned)INTVAL (X) >= 0xe0000000 \
- || (unsigned)INTVAL (X) < 0x20000000))
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
- #define LEGITIMATE_CONSTANT_P(X) 1
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
- #ifndef REG_OK_STRICT
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) < 8 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
- /* Nonzero if X is a hard reg that can be used as a base reg
- of if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) (REGNO (X) < 8 || REGNO (X) >= FRAME_POINTER_REGNUM)
- /* Nonzero if X is a floating point reg or a pseudo reg. */
- #else
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
- #endif
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
- /* 1 if X is an address that we could indirect through. */
- /***** NOTE ***** There is a bug in the Sequent assembler which fails
- to fixup addressing information for symbols used as offsets
- from registers which are not FP or SP (or SB or PC). This
- makes _x(fp) valid, while _x(r0) is invalid. */
- # define SEQUENT_HAS_FIXED_THEIR_BUG 0
- #define INDIRECTABLE_1_ADDRESS_P(X) \
- (CONSTANT_P (X) \
- || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 1))))
- #define MEM_REG(X) \
- ((GET_CODE (X) == REG && (REGNO (X) ^ 16) < 2) \
- || (GET_CODE (X) == SYMBOL_REF))
- #define INDIRECTABLE_2_ADDRESS_P(X) \
- (GET_CODE (X) == MEM \
- && (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
- || (GET_CODE (xfoo0) == PLUS \
- && MEM_REG (XEXP (xfoo0, 0)) \
- && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
- || CONSTANT_ADDRESS_P (xfoo0)))
- #define INDIRECTABLE_ADDRESS_P(X) \
- (INDIRECTABLE_1_ADDRESS_P(X) \
- || INDIRECTABLE_2_ADDRESS_P (X) \
- || (GET_CODE (X) == PLUS \
- && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1)) \
- && INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))))
- /* Go to ADDR if X is a valid address not using indexing.
- (This much is the easy part.) */
- #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
- { register rtx xfoob = (X); \
- if (GET_CODE (xfoob) == REG) goto ADDR; \
- if (INDIRECTABLE_1_ADDRESS_P(X)) goto ADDR; \
- if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
- if (GET_CODE (X) == PLUS) \
- if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
- if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
- goto ADDR; \
- }
- /* 1 if PROD is either a reg times size of mode MODE
- or just a reg, if MODE is just one byte. Actually, on the ns32k,
- since the index mode is independent of the operand size,
- we can match more stuff...
- This macro's expansion uses the temporary variables xfoo0, xfoo1
- and xfoo2 that must be declared in the surrounding context. */
- #define INDEX_TERM_P(PROD, MODE) \
- ((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
- || (GET_CODE (PROD) == MULT \
- && (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
- (GET_CODE (xfoo1) == CONST_INT \
- && GET_CODE (xfoo0) == REG \
- && FITS_INDEX_RANGE (INTVAL (xfoo1)) \
- && REG_OK_FOR_INDEX_P (xfoo0)))))
- #define FITS_INDEX_RANGE(X) \
- ((xfoo2 = (unsigned)(X)-1), \
- ((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { register rtx xfooy, xfooz, xfoo0, xfoo1; \
- unsigned xfoo2; \
- xfooy = X; \
- GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
- if (GET_CODE (xfooy) == PLUS) \
- { \
- if (GET_CODE (XEXP (xfooy, 1)) == CONST_INT \
- && GET_CODE (XEXP (xfooy, 0)) == PLUS) \
- xfooy = XEXP (xfooy, 0); \
- else if (GET_CODE (XEXP (xfooy, 0)) == CONST_INT \
- && GET_CODE (XEXP (xfooy, 1)) == PLUS) \
- xfooy = XEXP (xfooy, 1); \
- xfooz = XEXP (xfooy, 1); \
- if (INDEX_TERM_P (xfooz, MODE)) \
- { rtx t = XEXP (xfooy, 0); GO_IF_NONINDEXED_ADDRESS (t, ADDR); } \
- xfooz = XEXP (xfooy, 0); \
- if (INDEX_TERM_P (xfooz, MODE)) \
- { rtx t = XEXP (xfooy, 1); GO_IF_NONINDEXED_ADDRESS (t, ADDR); } \
- } \
- else if (INDEX_TERM_P (xfooy, MODE)) \
- goto ADDR; \
- else if (GET_CODE (xfooy) == PRE_DEC) \
- if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
- else abort (); \
- }
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
- For the ns32k, we do nothing */
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the ns32k, only predecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
- goto LABEL;}
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction.
- Can do SImode, but HI mode is more efficient. */
- #define CASE_VECTOR_MODE HImode
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #define CASE_VECTOR_PC_RELATIVE
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
- /* Define this if zero-extension is slow (more than one real instruction). */
- /* #define SLOW_ZERO_EXTEND */
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- /* #define SHIFT_COUNT_TRUNCATED */
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
- #define STORE_FLAG_VALUE 1
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
- #define CONST_COSTS(RTX,CODE) \
- case CONST_INT: \
- if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0; \
- if (INTVAL (RTX) < 0x4000 && INTVAL (RTX) >= -0x4000) \
- return 1; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5;
- /* Tell final.c how to eliminate redundant test instructions. */
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
- /* This bit means that what ought to be in the Z bit
- should be tested in the F bit. */
- #define CC_Z_IN_F 040
- /* This bit means that what ought to be in the Z bit
- is complemented in the F bit. */
- #define CC_Z_IN_NOT_F 0100
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
- #define NOTICE_UPDATE_CC(EXP) \
- { if (GET_CODE (EXP) == SET) \
- { if (GET_CODE (SET_DEST (EXP)) == CC0) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (EXP); \
- cc_status.value2 = SET_SRC (EXP); \
- } \
- else if (GET_CODE (SET_SRC (EXP)) == CALL) \
- { CC_STATUS_INIT; } \
- else if (GET_CODE (SET_DEST (EXP)) == REG) \
- { if (cc_status.value1 \
- && reg_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
- cc_status.value1 = 0; \
- if (cc_status.value2 \
- && reg_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
- cc_status.value2 = 0; \
- } \
- else if (GET_CODE (SET_DEST (EXP)) == MEM) \
- { CC_STATUS_INIT; } \
- } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
- { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
- cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
- } \
- else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
- { if (cc_status.value1 \
- && reg_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
- cc_status.value1 = 0; \
- if (cc_status.value2 \
- && reg_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
- cc_status.value2 = 0; \
- } \
- else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
- { CC_STATUS_INIT; } \
- } \
- else if (GET_CODE (EXP) == CALL) \
- { /* all bets are off */ CC_STATUS_INIT; } \
- else { /* nothing happens? CC_STATUS_INIT; */} \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_mentioned_p (cc_status.value1, cc_status.value2)) \
- printf ("here!\n", cc_status.value2 = 0); \
- }
- #define OUTPUT_JUMP(NORMAL, NO_OV) \
- { if (cc_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; }
- /* Control the assembler format that we output. */
- /* Output at beginning of assembler file. */
- #define ASM_FILE_START "#NO_APP\n"
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
- #define ASM_APP_ON "#APP\n"
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
- #define ASM_APP_OFF "#NO_APP\n"
- /* Output before read-only data. */
- #define TEXT_SECTION_ASM_OP ".text"
- /* Output before writable data. */
- #define DATA_SECTION_ASM_OP ".data"
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
- #define REGISTER_NAMES \
- {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
- "fp", "sp", "sb", "pc"}
- /* How to renumber registers for dbx and gdb.
- NS32000 may need more change in the numeration. */
- #define DBX_REGISTER_NUMBER(REGNO) ((REGNO < 8) ? (REGNO)+4 : (REGNO))
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "_%s", NAME)
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
- /* This is how to output an assembler line defining a `double' constant. */
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
- /* This is how to output an assembler line defining a `float' constant. */
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
- /* This is how to output an assembler line defining an `int' constant. */
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.long "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
- /* Likewise for `char' and `short' constants. */
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
- /* This is how to output an assembler line for a numeric constant byte. */
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
- /* This is how to output an element of a case-vector that is absolute.
- (The 68000 does not use such vectors,
- but we must define this macro anyway.) */
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.long L%d\n", VALUE)
- /* This is how to output an element of a case-vector that is relative. */
- /* ** Notice that the second element is LI format! */
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.word L%d-LI%d\n", VALUE, REL)
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- fprintf (FILE, "\t.align %d\n", (LOG))
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
- /* This says how to output an assembler line
- to define a global common symbol. */
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE) \
- ( fputs (".comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
- /* This says how to output an assembler line
- to define a local common symbol. */
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE) \
- ( fputs (".lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
- /* Print an instruction operand X on file FILE.
- CODE is the code from the %-spec that requested printing this operand;
- if `%z3' was used to print operand 3, then CODE is 'z'. */
- /* %$ means print the prefix for an immediate operand. */
- #define PRINT_OPERAND(FILE, X, CODE) \
- { if (CODE == '$') fprintf (FILE, "$"); \
- else if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_name [REGNO (X)]); \
- else if (GET_CODE (X) == MEM) \
- output_address (XEXP (X, 0)); \
- else if (GET_CODE (X) == CONST_DOUBLE) \
- if (GET_MODE (X) == DFmode) \
- { union { double d; int i[2]; } u; \
- u.i[0] = XINT (X, 0); u.i[1] = XINT (X, 1); \
- fprintf (FILE, "$0d%.20e", u.d); } \
- else fprintf (FILE, "$0f%.20e", XINT (X, 0)); \
- else { putc ('$', FILE); output_addr_const (FILE, X); }}
- /* Print a memory operand whose address is X, on file FILE. */
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx reg1, reg2, breg, ireg; \
- register rtx addr = ADDR; \
- rtx offset; \
- int mem=0, multval, offset_printed; \
- char reg1_str[256], reg2_str[256]; \
- retry: \
- switch (GET_CODE (addr)) \
- { \
- case MEM: \
- fprintf (FILE, "0("); \
- addr = XEXP (addr, 0); \
- mem =1; \
- goto retry; \
- case REG: \
- fprintf (FILE, "0(%s)", reg_name [REGNO (addr)]); \
- break; \
- case PRE_DEC: \
- if (REGNO(XEXP(addr, 0)) != STACK_POINTER_REGNUM) \
- fprintf(FILE, ")1:%d", REGNO(XEXP(addr,0))); \
- else fprintf (FILE, "tos", reg_name [REGNO (XEXP (addr, 0))]); \
- break; \
- case POST_INC: \
- if (REGNO(XEXP(addr, 0)) != STACK_POINTER_REGNUM) \
- fprintf(FILE, ")2:%d", REGNO(XEXP(addr,0))); \
- else fprintf (FILE, "tos", reg_name [REGNO (XEXP (addr, 0))]); \
- break; \
- case MULT: \
- reg1 = XEXP (addr, 0); /* [rX:Y] */ \
- reg2 = XEXP (addr, 1); /* CONST/REG */ \
- if (GET_CODE (reg1) == CONST_INT && GET_CODE(reg2) == REG) { \
- reg1 = reg2; \
- reg2 = XEXP (addr, 0); /* [rX:Y] */ \
- } else \
- if (GET_CODE (reg2) != CONST_INT || \
- GET_CODE (reg1) != REG) { \
- abort(); \
- } \
- fprintf (FILE, "0[%s:%c]", \
- reg_name[ REGNO(reg1) ], \
- "XbwXdXXXq"[INTVAL (reg2)]); \
- break; \
- case PLUS: \
- reg1 = 0; reg2 = 0; \
- ireg = 0; breg = 0; \
- offset = 0; \
- multval = 0; \
- reg1_str[0] = 0; reg2_str[0] = 0; \
- offset_printed = 0; \
- if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) \
- || GET_CODE (XEXP (addr, 0)) == MEM) \
- { \
- /* CONST / MEM(PLUS((REG)(CONST))) */ \
- offset = XEXP (addr, 0); \
- /* (REG) / PLUS((REG)(CONST)) / MULT((REG)(CONST)) */ \
- addr = XEXP (addr, 1); \
- } \
- else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) \
- || GET_CODE (XEXP (addr, 1)) == MEM) \
- { \
- /* CONST / MEM(PLUS((REG)(CONST))) */ \
- offset = XEXP (addr, 1); \
- /* (REG) / PLUS((REG)(CONST)) / MULT((REG)(CONST)) */ \
- addr = XEXP (addr, 0); \
- } \
- if (offset != 0) { \
- if (GET_CODE (offset) == MEM) { \
- offset = XEXP (offset, 0); /* skip MEM */ \
- switch (GET_CODE (offset)) { \
- case REG: \
- sprintf (reg1_str, "(%s)", \
- reg_name[REGNO (offset)]); \
- offset = 0; \
- break; \
- case PLUS: \
- if (!CONSTANT_ADDRESS_P (XEXP (offset, 1))) { \
- fprintf (FILE, \
- "PROGRAM in disorder PRINT_ADDR, PLUS, PLUS\n"); \
- print_rtl(FILE, offset); \
- exit (1); \
- } \
- if (GET_CODE (XEXP(offset,0)) != REG) { \
- fprintf (FILE, \
- "PROGRAM in disorder PRINT_ADDR, PLUS, REG\n"); \
- print_rtl(FILE, offset); \
- exit (1); \
- } \
- sprintf (reg1_str, "(%s))", \
- reg_name[REGNO (XEXP(offset,0))]); \
- offset = XEXP (offset, 1); \
- break; \
- default: \
- abort(); \
- } \
- } else { /* !MEM */ \
- if (!CONSTANT_ADDRESS_P (offset)) { \
- abort(); \
- } \
- output_addr_const (FILE, offset); \
- offset_printed = 1; \
- offset = 0; \
- } \
- } \
- \
- if (GET_CODE (addr) == PLUS) { \
- if (GET_CODE (XEXP (addr, 0)) == MULT) \
- { \
- reg1 = XEXP (addr, 0); /* [rX:Y] */ \
- addr = XEXP (addr, 1); /* CONST/REG */ \
- if (GET_CODE (XEXP (reg1, 1)) != CONST_INT || \
- GET_CODE (XEXP (reg1, 0)) != REG) { \
- abort(); \
- } \
- sprintf (reg2_str, "[%s:%c]", \
- reg_name[ REGNO(XEXP (reg1, 0)) ], \
- "XbwXdXXXq"[INTVAL (XEXP (reg1, 1))]); \
- reg1 = 0; \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == MULT) \
- { \
- reg1 = XEXP (addr, 1); /* [rX:Y] */ \
- addr = XEXP (addr, 0); /* CONST */ \
- if (GET_CODE (XEXP (reg1, 1)) != CONST_INT || \
- GET_CODE (XEXP (reg1, 0)) != REG) { \
- abort(); \
- } \
- sprintf (reg2_str, "[%s:%c]", \
- reg_name[ REGNO(XEXP (reg1, 0)) ], \
- "XbwXdXXXq"[INTVAL (XEXP (reg1, 1))]); \
- reg1 = 0; \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- sprintf (reg2_str, "[%s:b]", \
- reg_name[ REGNO(XEXP (addr, 0)) ]); \
- addr = XEXP (addr, 1); /* CONST / REG */ \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- sprintf (reg2_str, "[%s:b]", \
- reg_name[ REGNO(XEXP (addr, 1)) ]); \
- addr = XEXP (addr, 0); /* CONST / REG */ \
- } \
- } \
- if (addr) \
- switch (GET_CODE (addr)) { \
- case MULT: \
- if(*reg2_str) { \
- fprintf (FILE, \
- "PROGRAM in disorder PRINT_ADDR, INDEX, two mults\n"); \
- print_rtl(FILE, addr); \
- exit (1); \
- } \
- reg1 = XEXP (addr, 0); /* [rX:Y] */ \
- addr = XEXP (addr, 1); /* CONST */ \
- if (GET_CODE (addr) != CONST_INT) { \
- fprintf (FILE, \
- "PROGRAM in disorder PRINT_ADDR, INDEX, !CONS3 (%d)\n", \
- GET_CODE (addr)); \
- print_rtl(FILE, addr); \
- exit (1); \
- } \
- sprintf (reg2_str, "[%s:%c]", reg_name[ REGNO(reg1) ], \
- "XbwXdXXXq"[INTVAL (addr)]); \
- break; \
- case REG: \
- if (!*reg1_str) { \
- if (offset || offset_printed) \
- sprintf (reg1_str, "(%s)", reg_name[REGNO (addr)]); \
- else \
- sprintf (reg1_str, "0(%s)", reg_name[REGNO (addr)]); \
- } else if (!*reg2_str) \
- sprintf (reg2_str, "[%s:b]", \
- reg_name[REGNO (addr)]); \
- else { \
- abort(); \
- } \
- break; \
- default: \
- if (offset_printed) \
- fprintf (FILE, "+"); \
- output_addr_const (FILE, addr); \
- offset_printed ++; \
- } \
- if (offset) { \
- if(!offset_printed) \
- fputc ('0', FILE); \
- fputc ('(', FILE); \
- output_addr_const (FILE, offset); \
- } \
- if (*reg1_str) \
- fprintf (FILE, "%s", reg1_str); \
- if (*reg2_str) \
- fprintf (FILE, "%s", reg2_str); \
- break; \
- default: \
- output_addr_const (FILE, addr); \
- } \
- if(mem) \
- fprintf(FILE,")");}
- /*
- Local variables:
- version-control: t
- End:
- */
|