123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752 |
- /* Polygon.java -- class representing a polygon
- Copyright (C) 1999, 2002 Free Software Foundation, Inc.
- This file is part of GNU Classpath.
- GNU Classpath is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
- GNU Classpath is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GNU Classpath; see the file COPYING. If not, write to the
- Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
- 02111-1307 USA.
- Linking this library statically or dynamically with other modules is
- making a combined work based on this library. Thus, the terms and
- conditions of the GNU General Public License cover the whole
- combination.
- As a special exception, the copyright holders of this library give you
- permission to link this library with independent modules to produce an
- executable, regardless of the license terms of these independent
- modules, and to copy and distribute the resulting executable under
- terms of your choice, provided that you also meet, for each linked
- independent module, the terms and conditions of the license of that
- module. An independent module is a module which is not derived from
- or based on this library. If you modify this library, you may extend
- this exception to your version of the library, but you are not
- obligated to do so. If you do not wish to do so, delete this
- exception statement from your version. */
- package java.awt;
- import java.awt.geom.AffineTransform;
- import java.awt.geom.PathIterator;
- import java.awt.geom.Point2D;
- import java.awt.geom.Rectangle2D;
- import java.io.Serializable;
- /**
- * This class represents a polygon, a closed, two-dimensional region in a
- * coordinate space. The region is bounded by an arbitrary number of line
- * segments, between (x,y) coordinate vertices. The polygon has even-odd
- * winding, meaning that a point is inside the shape if it crosses the
- * boundary an odd number of times on the way to infinity.
- *
- * <p>There are some public fields; if you mess with them in an inconsistent
- * manner, it is your own fault when you get NullPointerException,
- * ArrayIndexOutOfBoundsException, or invalid results. Also, this class is
- * not threadsafe.
- *
- * @author Aaron M. Renn <arenn@urbanophile.com>
- * @author Eric Blake <ebb9@email.byu.edu>
- * @since 1.0
- * @status updated to 1.4
- */
- public class Polygon implements Shape, Serializable
- {
- /**
- * Compatible with JDK 1.0+.
- */
- private static final long serialVersionUID = -6460061437900069969L;
- /**
- * This total number of endpoints.
- *
- * @serial the number of endpoints, possibly less than the array sizes
- */
- public int npoints;
- /**
- * The array of X coordinates of endpoints. This should not be null.
- *
- * @see #addPoint(int, int)
- * @serial the x coordinates
- */
- public int[] xpoints;
- /**
- * The array of Y coordinates of endpoints. This should not be null.
- *
- * @see #addPoint(int, int)
- * @serial the y coordinates
- */
- public int[] ypoints;
- /**
- * The bounding box of this polygon. This is lazily created and cached, so
- * it must be invalidated after changing points.
- *
- * @see #getBounds()
- * @serial the bounding box, or null
- */
- protected Rectangle bounds;
- /**
- * Cached flattened version - condense points and parallel lines, so the
- * result has area if there are >= 3 condensed vertices. flat[0] is the
- * number of condensed points, and (flat[odd], flat[odd+1]) form the
- * condensed points.
- *
- * @see #condense()
- * @see #contains(double, double)
- * @see #contains(double, double, double, double)
- */
- private transient int[] condensed;
- /**
- * Initializes an empty polygon.
- */
- public Polygon()
- {
- // Leave room for growth.
- xpoints = new int[4];
- ypoints = new int[4];
- }
- /**
- * Create a new polygon with the specified endpoints. The arrays are copied,
- * so that future modifications to the parameters do not affect the polygon.
- *
- * @param xpoints the array of X coordinates for this polygon
- * @param ypoints the array of Y coordinates for this polygon
- * @param npoints the total number of endpoints in this polygon
- * @throws NegativeArraySizeException if npoints is negative
- * @throws IndexOutOfBoundsException if npoints exceeds either array
- * @throws NullPointerException if xpoints or ypoints is null
- */
- public Polygon(int[] xpoints, int[] ypoints, int npoints)
- {
- this.xpoints = new int[npoints];
- this.ypoints = new int[npoints];
- System.arraycopy(xpoints, 0, this.xpoints, 0, npoints);
- System.arraycopy(ypoints, 0, this.ypoints, 0, npoints);
- this.npoints = npoints;
- }
- /**
- * Reset the polygon to be empty. The arrays are left alone, to avoid object
- * allocation, but the number of points is set to 0, and all cached data
- * is discarded. If you are discarding a huge number of points, it may be
- * more efficient to just create a new Polygon.
- *
- * @see #invalidate()
- * @since 1.4
- */
- public void reset()
- {
- npoints = 0;
- invalidate();
- }
- /**
- * Invalidate or flush all cached data. After direct manipulation of the
- * public member fields, this is necessary to avoid inconsistent results
- * in methods like <code>contains</code>.
- *
- * @see #getBounds()
- * @since 1.4
- */
- public void invalidate()
- {
- bounds = null;
- condensed = null;
- }
- /**
- * Translates the polygon by adding the specified values to all X and Y
- * coordinates. This updates the bounding box, if it has been calculated.
- *
- * @param dx the amount to add to all X coordinates
- * @param dy the amount to add to all Y coordinates
- * @since 1.1
- */
- public void translate(int dx, int dy)
- {
- int i = npoints;
- while (--i >= 0)
- {
- xpoints[i] += dx;
- xpoints[i] += dy;
- }
- if (bounds != null)
- {
- bounds.x += dx;
- bounds.y += dy;
- }
- condensed = null;
- }
- /**
- * Adds the specified endpoint to the polygon. This updates the bounding
- * box, if it has been created.
- *
- * @param x the X coordinate of the point to add
- * @param y the Y coordiante of the point to add
- */
- public void addPoint(int x, int y)
- {
- if (npoints + 1 > xpoints.length)
- {
- int[] newx = new int[npoints + 1];
- System.arraycopy(xpoints, 0, newx, 0, npoints);
- xpoints = newx;
- }
- if (npoints + 1 > ypoints.length)
- {
- int[] newy = new int[npoints + 1];
- System.arraycopy(ypoints, 0, newy, 0, npoints);
- ypoints = newy;
- }
- xpoints[npoints] = x;
- ypoints[npoints] = y;
- npoints++;
- if (bounds != null)
- {
- if (npoints == 1)
- {
- bounds.x = x;
- bounds.y = y;
- }
- else
- {
- if (x < bounds.x)
- {
- bounds.width += bounds.x - x;
- bounds.x = x;
- }
- else if (x > bounds.x + bounds.width)
- bounds.width = x - bounds.x;
- if (y < bounds.y)
- {
- bounds.height += bounds.y - y;
- bounds.y = y;
- }
- else if (y > bounds.y + bounds.height)
- bounds.height = y - bounds.y;
- }
- }
- condensed = null;
- }
- /**
- * Returns the bounding box of this polygon. This is the smallest
- * rectangle with sides parallel to the X axis that will contain this
- * polygon.
- *
- * @return the bounding box for this polygon
- * @see #getBounds2D()
- * @since 1.1
- */
- public Rectangle getBounds()
- {
- if (bounds == null)
- {
- if (npoints == 0)
- return bounds = new Rectangle();
- int i = npoints - 1;
- int minx = xpoints[i];
- int maxx = minx;
- int miny = ypoints[i];
- int maxy = miny;
- while (--i >= 0)
- {
- int x = xpoints[i];
- int y = ypoints[i];
- if (x < minx)
- minx = x;
- else if (x > maxx)
- maxx = x;
- if (y < miny)
- miny = y;
- else if (y > maxy)
- maxy = y;
- }
- bounds = new Rectangle(minx, maxy, maxx - minx, maxy - miny);
- }
- return bounds;
- }
- /**
- * Returns the bounding box of this polygon. This is the smallest
- * rectangle with sides parallel to the X axis that will contain this
- * polygon.
- *
- * @return the bounding box for this polygon
- * @see #getBounds2D()
- * @deprecated use {@link #getBounds()} instead
- */
- public Rectangle getBoundingBox()
- {
- return getBounds();
- }
- /**
- * Tests whether or not the specified point is inside this polygon.
- *
- * @param p the point to test
- * @return true if the point is inside this polygon
- * @throws NullPointerException if p is null
- * @see #contains(double, double)
- */
- public boolean contains(Point p)
- {
- return contains(p.getX(), p.getY());
- }
- /**
- * Tests whether or not the specified point is inside this polygon.
- *
- * @param x the X coordinate of the point to test
- * @param y the Y coordinate of the point to test
- * @return true if the point is inside this polygon
- * @see #contains(double, double)
- * @since 1.1
- */
- public boolean contains(int x, int y)
- {
- return contains((double) x, (double) y);
- }
- /**
- * Tests whether or not the specified point is inside this polygon.
- *
- * @param x the X coordinate of the point to test
- * @param y the Y coordinate of the point to test
- * @return true if the point is inside this polygon
- * @see #contains(double, double)
- * @deprecated use {@link #contains(int, int)} instead
- */
- public boolean inside(int x, int y)
- {
- return contains((double) x, (double) y);
- }
- /**
- * Returns a high-precision bounding box of this polygon. This is the
- * smallest rectangle with sides parallel to the X axis that will contain
- * this polygon.
- *
- * @return the bounding box for this polygon
- * @see #getBounds()
- * @since 1.2
- */
- public Rectangle2D getBounds2D()
- {
- // For polygons, the integer version is exact!
- return getBounds();
- }
- /**
- * Tests whether or not the specified point is inside this polygon.
- *
- * @param x the X coordinate of the point to test
- * @param y the Y coordinate of the point to test
- * @return true if the point is inside this polygon
- * @since 1.2
- */
- public boolean contains(double x, double y)
- {
- // First, the obvious bounds checks.
- if (! condense() || ! getBounds().contains(x, y))
- return false;
- // A point is contained if a ray to (-inf, y) crosses an odd number
- // of segments. This must obey the semantics of Shape when the point is
- // exactly on a segment or vertex: a point is inside only if the adjacent
- // point in the increasing x or y direction is also inside. Note that we
- // are guaranteed that the condensed polygon has area, and no consecutive
- // segments with identical slope.
- boolean inside = false;
- int limit = condensed[0];
- int curx = condensed[(limit << 1) - 1];
- int cury = condensed[limit << 1];
- for (int i = 1; i <= limit; i++)
- {
- int priorx = curx;
- int priory = cury;
- curx = condensed[(i << 1) - 1];
- cury = condensed[i << 1];
- if ((priorx > x && curx > x) // Left of segment, or NaN.
- || (priory > y && cury > y) // Below segment, or NaN.
- || (priory < y && cury < y)) // Above segment.
- continue;
- if (priory == cury) // Horizontal segment, y == cury == priory
- {
- if (priorx < x && curx < x) // Right of segment.
- {
- inside = ! inside;
- continue;
- }
- // Did we approach this segment from above or below?
- // This mess is necessary to obey rules of Shape.
- priory = condensed[((limit + i - 2) % limit) << 1];
- boolean above = priory > cury;
- if ((curx == x && (curx > priorx || above))
- || (priorx == x && (curx < priorx || ! above))
- || (curx > priorx && ! above) || above)
- inside = ! inside;
- continue;
- }
- if (priorx == x && priory == y) // On prior vertex.
- continue;
- if (priorx == curx // Vertical segment.
- || (priorx < x && curx < x)) // Right of segment.
- {
- inside = ! inside;
- continue;
- }
- // The point is inside the segment's bounding box, compare slopes.
- double leftx = curx > priorx ? priorx : curx;
- double lefty = curx > priorx ? priory : cury;
- double slopeseg = (double) (cury - priory) / (curx - priorx);
- double slopepoint = (double) (y - lefty) / (x - leftx);
- if ((slopeseg > 0 && slopeseg > slopepoint)
- || slopeseg < slopepoint)
- inside = ! inside;
- }
- return inside;
- }
- /**
- * Tests whether or not the specified point is inside this polygon.
- *
- * @param p the point to test
- * @return true if the point is inside this polygon
- * @throws NullPointerException if p is null
- * @see #contains(double, double)
- * @since 1.2
- */
- public boolean contains(Point2D p)
- {
- return contains(p.getX(), p.getY());
- }
- /**
- * Test if a high-precision rectangle intersects the shape. This is true
- * if any point in the rectangle is in the shape. This implementation is
- * precise.
- *
- * @param x the x coordinate of the rectangle
- * @param y the y coordinate of the rectangle
- * @param w the width of the rectangle, treated as point if negative
- * @param h the height of the rectangle, treated as point if negative
- * @return true if the rectangle intersects this shape
- * @since 1.2
- */
- public boolean intersects(double x, double y, double w, double h)
- {
- // First, the obvious bounds checks.
- if (w <= 0 || h <= 0 || npoints == 0 ||
- ! getBounds().intersects(x, y, w, h))
- return false; // Disjoint bounds.
- if ((x <= bounds.x && x + w >= bounds.x + bounds.width
- && y <= bounds.y && y + h >= bounds.y + bounds.height)
- || contains(x, y))
- return true; // Rectangle contains the polygon, or one point matches.
- // If any vertex is in the rectangle, the two might intersect.
- int curx = 0;
- int cury = 0;
- for (int i = 0; i < npoints; i++)
- {
- curx = xpoints[i];
- cury = ypoints[i];
- if (curx >= x && curx < x + w && cury >= y && cury < y + h
- && contains(curx, cury)) // Boundary check necessary.
- return true;
- }
- // Finally, if at least one of the four bounding lines intersect any
- // segment of the polygon, return true. Be careful of the semantics of
- // Shape; coinciding lines do not necessarily return true.
- for (int i = 0; i < npoints; i++)
- {
- int priorx = curx;
- int priory = cury;
- curx = xpoints[i];
- cury = ypoints[i];
- if (priorx == curx) // Vertical segment.
- {
- if (curx < x || curx >= x + w) // Outside rectangle.
- continue;
- if ((cury >= y + h && priory <= y)
- || (cury <= y && priory >= y + h))
- return true; // Bisects rectangle.
- continue;
- }
- if (priory == cury) // Horizontal segment.
- {
- if (cury < y || cury >= y + h) // Outside rectangle.
- continue;
- if ((curx >= x + w && priorx <= x)
- || (curx <= x && priorx >= x + w))
- return true; // Bisects rectangle.
- continue;
- }
- // Slanted segment.
- double slope = (double) (cury - priory) / (curx - priorx);
- double intersect = slope * (x - curx) + cury;
- if (intersect > y && intersect < y + h) // Intersects left edge.
- return true;
- intersect = slope * (x + w - curx) + cury;
- if (intersect > y && intersect < y + h) // Intersects right edge.
- return true;
- intersect = (y - cury) / slope + curx;
- if (intersect > x && intersect < x + w) // Intersects bottom edge.
- return true;
- intersect = (y + h - cury) / slope + cury;
- if (intersect > x && intersect < x + w) // Intersects top edge.
- return true;
- }
- return false;
- }
- /**
- * Test if a high-precision rectangle intersects the shape. This is true
- * if any point in the rectangle is in the shape. This implementation is
- * precise.
- *
- * @param r the rectangle
- * @return true if the rectangle intersects this shape
- * @throws NullPointerException if r is null
- * @see #intersects(double, double, double, double)
- * @since 1.2
- */
- public boolean intersects(Rectangle2D r)
- {
- return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
- /**
- * Test if a high-precision rectangle lies completely in the shape. This is
- * true if all points in the rectangle are in the shape. This implementation
- * is precise.
- *
- * @param x the x coordinate of the rectangle
- * @param y the y coordinate of the rectangle
- * @param w the width of the rectangle, treated as point if negative
- * @param h the height of the rectangle, treated as point if negative
- * @return true if the rectangle is contained in this shape
- * @since 1.2
- */
- public boolean contains(double x, double y, double w, double h)
- {
- // First, the obvious bounds checks.
- if (w <= 0 || h <= 0 || ! contains(x, y)
- || ! bounds.contains(x, y, w, h))
- return false;
- // Now, if any of the four bounding lines intersects a polygon segment,
- // return false. The previous check had the side effect of setting
- // the condensed array, which we use. Be careful of the semantics of
- // Shape; coinciding lines do not necessarily return false.
- int limit = condensed[0];
- int curx = condensed[(limit << 1) - 1];
- int cury = condensed[limit << 1];
- for (int i = 1; i <= limit; i++)
- {
- int priorx = curx;
- int priory = cury;
- curx = condensed[(i << 1) - 1];
- cury = condensed[i << 1];
- if (curx > x && curx < x + w && cury > y && cury < y + h)
- return false; // Vertex is in rectangle.
- if (priorx == curx) // Vertical segment.
- {
- if (curx < x || curx > x + w) // Outside rectangle.
- continue;
- if ((cury >= y + h && priory <= y)
- || (cury <= y && priory >= y + h))
- return false; // Bisects rectangle.
- continue;
- }
- if (priory == cury) // Horizontal segment.
- {
- if (cury < y || cury > y + h) // Outside rectangle.
- continue;
- if ((curx >= x + w && priorx <= x)
- || (curx <= x && priorx >= x + w))
- return false; // Bisects rectangle.
- continue;
- }
- // Slanted segment.
- double slope = (double) (cury - priory) / (curx - priorx);
- double intersect = slope * (x - curx) + cury;
- if (intersect > y && intersect < y + h) // Intersects left edge.
- return false;
- intersect = slope * (x + w - curx) + cury;
- if (intersect > y && intersect < y + h) // Intersects right edge.
- return false;
- intersect = (y - cury) / slope + curx;
- if (intersect > x && intersect < x + w) // Intersects bottom edge.
- return false;
- intersect = (y + h - cury) / slope + cury;
- if (intersect > x && intersect < x + w) // Intersects top edge.
- return false;
- }
- return true;
- }
- /**
- * Test if a high-precision rectangle lies completely in the shape. This is
- * true if all points in the rectangle are in the shape. This implementation
- * is precise.
- *
- * @param r the rectangle
- * @return true if the rectangle is contained in this shape
- * @throws NullPointerException if r is null
- * @see #contains(double, double, double, double)
- * @since 1.2
- */
- public boolean contains(Rectangle2D r)
- {
- return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
- /**
- * Return an iterator along the shape boundary. If the optional transform
- * is provided, the iterator is transformed accordingly. Each call returns
- * a new object, independent from others in use. This class is not
- * threadsafe to begin with, so the path iterator is not either.
- *
- * @param transform an optional transform to apply to the iterator
- * @return a new iterator over the boundary
- * @since 1.2
- */
- public PathIterator getPathIterator(final AffineTransform transform)
- {
- return new PathIterator()
- {
- /** The current vertex of iteration. */
- private int vertex;
- public int getWindingRule()
- {
- return WIND_EVEN_ODD;
- }
- public boolean isDone()
- {
- return vertex > npoints;
- }
- public void next()
- {
- vertex++;
- }
- public int currentSegment(float[] coords)
- {
- if (vertex >= npoints)
- return SEG_CLOSE;
- coords[0] = xpoints[vertex];
- coords[1] = ypoints[vertex];
- if (transform != null)
- transform.transform(coords, 0, coords, 0, 1);
- return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
- }
- public int currentSegment(double[] coords)
- {
- if (vertex >= npoints)
- return SEG_CLOSE;
- coords[0] = xpoints[vertex];
- coords[1] = ypoints[vertex];
- if (transform != null)
- transform.transform(coords, 0, coords, 0, 1);
- return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
- }
- };
- }
- /**
- * Return an iterator along the flattened version of the shape boundary.
- * Since polygons are already flat, the flatness parameter is ignored, and
- * the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE
- * points. If the optional transform is provided, the iterator is
- * transformed accordingly. Each call returns a new object, independent
- * from others in use. This class is not threadsafe to begin with, so the
- * path iterator is not either.
- *
- * @param transform an optional transform to apply to the iterator
- * @param double the maximum distance for deviation from the real boundary
- * @return a new iterator over the boundary
- * @since 1.2
- */
- public PathIterator getPathIterator(AffineTransform transform,
- double flatness)
- {
- return getPathIterator(transform);
- }
- /**
- * Helper for contains, which caches a condensed version of the polygon.
- * This condenses all colinear points, so that consecutive segments in
- * the condensed version always have different slope.
- *
- * @return true if the condensed polygon has area
- * @see #condensed
- * @see #contains(double, double)
- */
- private boolean condense()
- {
- if (npoints <= 2)
- return false;
- if (condensed != null)
- return condensed[0] > 2;
- condensed = new int[npoints * 2 + 1];
- int curx = xpoints[npoints - 1];
- int cury = ypoints[npoints - 1];
- double curslope = Double.NaN;
- int count = 0;
- outer:
- for (int i = 0; i < npoints; i++)
- {
- int priorx = curx;
- int priory = cury;
- double priorslope = curslope;
- curx = xpoints[i];
- cury = ypoints[i];
- while (curx == priorx && cury == priory)
- {
- if (++i == npoints)
- break outer;
- curx = xpoints[i];
- cury = ypoints[i];
- }
- curslope = (curx == priorx ? Double.POSITIVE_INFINITY
- : (double) (cury - priory) / (curx - priorx));
- if (priorslope == curslope)
- {
- if (count > 1 && condensed[(count << 1) - 3] == curx
- && condensed[(count << 1) - 2] == cury)
- {
- count--;
- continue;
- }
- }
- else
- count++;
- condensed[(count << 1) - 1] = curx;
- condensed[count << 1] = cury;
- }
- condensed[0] = count;
- return count > 2;
- }
- } // class Polygon
|