LzmaDec.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. /* LzmaDec.c -- LZMA Decoder
  2. 2008-11-06 : Igor Pavlov : Public domain */
  3. #include "LzmaDec.h"
  4. #include <string.h>
  5. #define kNumTopBits 24
  6. #define kTopValue ((UInt32)1 << kNumTopBits)
  7. #define kNumBitModelTotalBits 11
  8. #define kBitModelTotal (1 << kNumBitModelTotalBits)
  9. #define kNumMoveBits 5
  10. #define RC_INIT_SIZE 5
  11. #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
  12. #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  13. #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
  14. #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
  15. #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
  16. { UPDATE_0(p); i = (i + i); A0; } else \
  17. { UPDATE_1(p); i = (i + i) + 1; A1; }
  18. #define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
  19. #define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
  20. #define TREE_DECODE(probs, limit, i) \
  21. { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
  22. /* #define _LZMA_SIZE_OPT */
  23. #ifdef _LZMA_SIZE_OPT
  24. #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
  25. #else
  26. #define TREE_6_DECODE(probs, i) \
  27. { i = 1; \
  28. TREE_GET_BIT(probs, i); \
  29. TREE_GET_BIT(probs, i); \
  30. TREE_GET_BIT(probs, i); \
  31. TREE_GET_BIT(probs, i); \
  32. TREE_GET_BIT(probs, i); \
  33. TREE_GET_BIT(probs, i); \
  34. i -= 0x40; }
  35. #endif
  36. #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
  37. #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  38. #define UPDATE_0_CHECK range = bound;
  39. #define UPDATE_1_CHECK range -= bound; code -= bound;
  40. #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
  41. { UPDATE_0_CHECK; i = (i + i); A0; } else \
  42. { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
  43. #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
  44. #define TREE_DECODE_CHECK(probs, limit, i) \
  45. { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
  46. #define kNumPosBitsMax 4
  47. #define kNumPosStatesMax (1 << kNumPosBitsMax)
  48. #define kLenNumLowBits 3
  49. #define kLenNumLowSymbols (1 << kLenNumLowBits)
  50. #define kLenNumMidBits 3
  51. #define kLenNumMidSymbols (1 << kLenNumMidBits)
  52. #define kLenNumHighBits 8
  53. #define kLenNumHighSymbols (1 << kLenNumHighBits)
  54. #define LenChoice 0
  55. #define LenChoice2 (LenChoice + 1)
  56. #define LenLow (LenChoice2 + 1)
  57. #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
  58. #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
  59. #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
  60. #define kNumStates 12
  61. #define kNumLitStates 7
  62. #define kStartPosModelIndex 4
  63. #define kEndPosModelIndex 14
  64. #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
  65. #define kNumPosSlotBits 6
  66. #define kNumLenToPosStates 4
  67. #define kNumAlignBits 4
  68. #define kAlignTableSize (1 << kNumAlignBits)
  69. #define kMatchMinLen 2
  70. #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
  71. #define IsMatch 0
  72. #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
  73. #define IsRepG0 (IsRep + kNumStates)
  74. #define IsRepG1 (IsRepG0 + kNumStates)
  75. #define IsRepG2 (IsRepG1 + kNumStates)
  76. #define IsRep0Long (IsRepG2 + kNumStates)
  77. #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
  78. #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
  79. #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
  80. #define LenCoder (Align + kAlignTableSize)
  81. #define RepLenCoder (LenCoder + kNumLenProbs)
  82. #define Literal (RepLenCoder + kNumLenProbs)
  83. #define LZMA_BASE_SIZE 1846
  84. #define LZMA_LIT_SIZE 768
  85. #define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
  86. #if Literal != LZMA_BASE_SIZE
  87. StopCompilingDueBUG
  88. #endif
  89. static const Byte kLiteralNextStates[kNumStates * 2] =
  90. {
  91. 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5,
  92. 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
  93. };
  94. #define LZMA_DIC_MIN (1 << 12)
  95. /* First LZMA-symbol is always decoded.
  96. And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
  97. Out:
  98. Result:
  99. SZ_OK - OK
  100. SZ_ERROR_DATA - Error
  101. p->remainLen:
  102. < kMatchSpecLenStart : normal remain
  103. = kMatchSpecLenStart : finished
  104. = kMatchSpecLenStart + 1 : Flush marker
  105. = kMatchSpecLenStart + 2 : State Init Marker
  106. */
  107. #define ENABLE_PROGRESS 1
  108. #define MAX_LZMA_PROGRESS_COUNT 240
  109. extern void draw_progress_bar(int progressCount);
  110. static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  111. {
  112. CLzmaProb *probs = p->probs;
  113. unsigned state = p->state;
  114. UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
  115. unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
  116. unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
  117. unsigned lc = p->prop.lc;
  118. Byte *dic = p->dic;
  119. SizeT dicBufSize = p->dicBufSize;
  120. SizeT dicPos = p->dicPos;
  121. UInt32 processedPos = p->processedPos;
  122. UInt32 checkDicSize = p->checkDicSize;
  123. unsigned len = 0;
  124. const Byte *buf = p->buf;
  125. UInt32 range = p->range;
  126. UInt32 code = p->code;
  127. #if ENABLE_PROGRESS
  128. SizeT LzmaSizePerProgressUnit = 0;
  129. SizeT LzmaLastPos = 0;
  130. SizeT LzmaProgressCount = 0;
  131. LzmaSizePerProgressUnit = p->dicBufSize / MAX_LZMA_PROGRESS_COUNT;
  132. if (LzmaSizePerProgressUnit < 1)
  133. LzmaSizePerProgressUnit = 1;
  134. draw_progress_bar(0);
  135. #endif
  136. do
  137. {
  138. CLzmaProb *prob;
  139. UInt32 bound;
  140. unsigned ttt;
  141. unsigned posState = processedPos & pbMask;
  142. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  143. IF_BIT_0(prob)
  144. {
  145. unsigned symbol;
  146. UPDATE_0(prob);
  147. prob = probs + Literal;
  148. if (checkDicSize != 0 || processedPos != 0)
  149. prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
  150. (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
  151. if (state < kNumLitStates)
  152. {
  153. symbol = 1;
  154. do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
  155. }
  156. else
  157. {
  158. unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  159. unsigned offs = 0x100;
  160. symbol = 1;
  161. do
  162. {
  163. unsigned bit;
  164. CLzmaProb *probLit;
  165. matchByte <<= 1;
  166. bit = (matchByte & offs);
  167. probLit = prob + offs + bit + symbol;
  168. GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
  169. }
  170. while (symbol < 0x100);
  171. }
  172. dic[dicPos++] = (Byte)symbol;
  173. processedPos++;
  174. state = kLiteralNextStates[state];
  175. /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
  176. continue;
  177. }
  178. else
  179. {
  180. UPDATE_1(prob);
  181. prob = probs + IsRep + state;
  182. IF_BIT_0(prob)
  183. {
  184. UPDATE_0(prob);
  185. state += kNumStates;
  186. prob = probs + LenCoder;
  187. }
  188. else
  189. {
  190. UPDATE_1(prob);
  191. if (checkDicSize == 0 && processedPos == 0)
  192. return SZ_ERROR_DATA;
  193. prob = probs + IsRepG0 + state;
  194. IF_BIT_0(prob)
  195. {
  196. UPDATE_0(prob);
  197. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  198. IF_BIT_0(prob)
  199. {
  200. UPDATE_0(prob);
  201. dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  202. dicPos++;
  203. processedPos++;
  204. state = state < kNumLitStates ? 9 : 11;
  205. continue;
  206. }
  207. UPDATE_1(prob);
  208. }
  209. else
  210. {
  211. UInt32 distance;
  212. UPDATE_1(prob);
  213. prob = probs + IsRepG1 + state;
  214. IF_BIT_0(prob)
  215. {
  216. UPDATE_0(prob);
  217. distance = rep1;
  218. }
  219. else
  220. {
  221. UPDATE_1(prob);
  222. prob = probs + IsRepG2 + state;
  223. IF_BIT_0(prob)
  224. {
  225. UPDATE_0(prob);
  226. distance = rep2;
  227. }
  228. else
  229. {
  230. UPDATE_1(prob);
  231. distance = rep3;
  232. rep3 = rep2;
  233. }
  234. rep2 = rep1;
  235. }
  236. rep1 = rep0;
  237. rep0 = distance;
  238. }
  239. state = state < kNumLitStates ? 8 : 11;
  240. prob = probs + RepLenCoder;
  241. }
  242. {
  243. unsigned limit, offset;
  244. CLzmaProb *probLen = prob + LenChoice;
  245. IF_BIT_0(probLen)
  246. {
  247. UPDATE_0(probLen);
  248. probLen = prob + LenLow + (posState << kLenNumLowBits);
  249. offset = 0;
  250. limit = (1 << kLenNumLowBits);
  251. }
  252. else
  253. {
  254. UPDATE_1(probLen);
  255. probLen = prob + LenChoice2;
  256. IF_BIT_0(probLen)
  257. {
  258. UPDATE_0(probLen);
  259. probLen = prob + LenMid + (posState << kLenNumMidBits);
  260. offset = kLenNumLowSymbols;
  261. limit = (1 << kLenNumMidBits);
  262. }
  263. else
  264. {
  265. UPDATE_1(probLen);
  266. probLen = prob + LenHigh;
  267. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  268. limit = (1 << kLenNumHighBits);
  269. }
  270. }
  271. TREE_DECODE(probLen, limit, len);
  272. len += offset;
  273. }
  274. if (state >= kNumStates)
  275. {
  276. UInt32 distance;
  277. prob = probs + PosSlot +
  278. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
  279. TREE_6_DECODE(prob, distance);
  280. if (distance >= kStartPosModelIndex)
  281. {
  282. unsigned posSlot = (unsigned)distance;
  283. int numDirectBits = (int)(((distance >> 1) - 1));
  284. distance = (2 | (distance & 1));
  285. if (posSlot < kEndPosModelIndex)
  286. {
  287. distance <<= numDirectBits;
  288. prob = probs + SpecPos + distance - posSlot - 1;
  289. {
  290. UInt32 mask = 1;
  291. unsigned i = 1;
  292. do
  293. {
  294. GET_BIT2(prob + i, i, ; , distance |= mask);
  295. mask <<= 1;
  296. }
  297. while (--numDirectBits != 0);
  298. }
  299. }
  300. else
  301. {
  302. numDirectBits -= kNumAlignBits;
  303. do
  304. {
  305. NORMALIZE
  306. range >>= 1;
  307. {
  308. UInt32 t;
  309. code -= range;
  310. t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
  311. distance = (distance << 1) + (t + 1);
  312. code += range & t;
  313. }
  314. /*
  315. distance <<= 1;
  316. if (code >= range)
  317. {
  318. code -= range;
  319. distance |= 1;
  320. }
  321. */
  322. }
  323. while (--numDirectBits != 0);
  324. prob = probs + Align;
  325. distance <<= kNumAlignBits;
  326. {
  327. unsigned i = 1;
  328. GET_BIT2(prob + i, i, ; , distance |= 1);
  329. GET_BIT2(prob + i, i, ; , distance |= 2);
  330. GET_BIT2(prob + i, i, ; , distance |= 4);
  331. GET_BIT2(prob + i, i, ; , distance |= 8);
  332. }
  333. if (distance == (UInt32)0xFFFFFFFF)
  334. {
  335. len += kMatchSpecLenStart;
  336. state -= kNumStates;
  337. break;
  338. }
  339. }
  340. }
  341. rep3 = rep2;
  342. rep2 = rep1;
  343. rep1 = rep0;
  344. rep0 = distance + 1;
  345. if (checkDicSize == 0)
  346. {
  347. if (distance >= processedPos)
  348. return SZ_ERROR_DATA;
  349. }
  350. else if (distance >= checkDicSize)
  351. return SZ_ERROR_DATA;
  352. state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
  353. /* state = kLiteralNextStates[state]; */
  354. }
  355. len += kMatchMinLen;
  356. if (limit == dicPos)
  357. return SZ_ERROR_DATA;
  358. {
  359. SizeT rem = limit - dicPos;
  360. unsigned curLen = ((rem < len) ? (unsigned)rem : len);
  361. SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
  362. processedPos += curLen;
  363. len -= curLen;
  364. if (pos + curLen <= dicBufSize)
  365. {
  366. Byte *dest = dic + dicPos;
  367. ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
  368. const Byte *lim = dest + curLen;
  369. dicPos += curLen;
  370. do
  371. *(dest) = (Byte)*(dest + src);
  372. while (++dest != lim);
  373. }
  374. else
  375. {
  376. do
  377. {
  378. dic[dicPos++] = dic[pos];
  379. if (++pos == dicBufSize)
  380. pos = 0;
  381. }
  382. while (--curLen != 0);
  383. }
  384. }
  385. }
  386. #if ENABLE_PROGRESS
  387. while (dicPos - LzmaLastPos >= LzmaSizePerProgressUnit)
  388. {
  389. LzmaLastPos += LzmaSizePerProgressUnit;
  390. LzmaProgressCount++;
  391. draw_progress_bar(LzmaProgressCount);
  392. }
  393. #endif
  394. }
  395. while (dicPos < limit && buf < bufLimit);
  396. NORMALIZE;
  397. p->buf = buf;
  398. p->range = range;
  399. p->code = code;
  400. p->remainLen = len;
  401. p->dicPos = dicPos;
  402. p->processedPos = processedPos;
  403. p->reps[0] = rep0;
  404. p->reps[1] = rep1;
  405. p->reps[2] = rep2;
  406. p->reps[3] = rep3;
  407. p->state = state;
  408. return SZ_OK;
  409. }
  410. static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
  411. {
  412. if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
  413. {
  414. Byte *dic = p->dic;
  415. SizeT dicPos = p->dicPos;
  416. SizeT dicBufSize = p->dicBufSize;
  417. unsigned len = p->remainLen;
  418. UInt32 rep0 = p->reps[0];
  419. if (limit - dicPos < len)
  420. len = (unsigned)(limit - dicPos);
  421. if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
  422. p->checkDicSize = p->prop.dicSize;
  423. p->processedPos += len;
  424. p->remainLen -= len;
  425. while (len-- != 0)
  426. {
  427. dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  428. dicPos++;
  429. }
  430. p->dicPos = dicPos;
  431. }
  432. }
  433. static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  434. {
  435. do
  436. {
  437. SizeT limit2 = limit;
  438. if (p->checkDicSize == 0)
  439. {
  440. UInt32 rem = p->prop.dicSize - p->processedPos;
  441. if (limit - p->dicPos > rem)
  442. limit2 = p->dicPos + rem;
  443. }
  444. RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
  445. if (p->processedPos >= p->prop.dicSize)
  446. p->checkDicSize = p->prop.dicSize;
  447. LzmaDec_WriteRem(p, limit);
  448. }
  449. while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
  450. if (p->remainLen > kMatchSpecLenStart)
  451. {
  452. p->remainLen = kMatchSpecLenStart;
  453. }
  454. return 0;
  455. }
  456. typedef enum
  457. {
  458. DUMMY_ERROR, /* unexpected end of input stream */
  459. DUMMY_LIT,
  460. DUMMY_MATCH,
  461. DUMMY_REP
  462. } ELzmaDummy;
  463. static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
  464. {
  465. UInt32 range = p->range;
  466. UInt32 code = p->code;
  467. const Byte *bufLimit = buf + inSize;
  468. CLzmaProb *probs = p->probs;
  469. unsigned state = p->state;
  470. ELzmaDummy res;
  471. {
  472. CLzmaProb *prob;
  473. UInt32 bound;
  474. unsigned ttt;
  475. unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
  476. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  477. IF_BIT_0_CHECK(prob)
  478. {
  479. UPDATE_0_CHECK
  480. /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
  481. prob = probs + Literal;
  482. if (p->checkDicSize != 0 || p->processedPos != 0)
  483. prob += (LZMA_LIT_SIZE *
  484. ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
  485. (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
  486. if (state < kNumLitStates)
  487. {
  488. unsigned symbol = 1;
  489. do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
  490. }
  491. else
  492. {
  493. unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
  494. ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
  495. unsigned offs = 0x100;
  496. unsigned symbol = 1;
  497. do
  498. {
  499. unsigned bit;
  500. CLzmaProb *probLit;
  501. matchByte <<= 1;
  502. bit = (matchByte & offs);
  503. probLit = prob + offs + bit + symbol;
  504. GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
  505. }
  506. while (symbol < 0x100);
  507. }
  508. res = DUMMY_LIT;
  509. }
  510. else
  511. {
  512. unsigned len;
  513. UPDATE_1_CHECK;
  514. prob = probs + IsRep + state;
  515. IF_BIT_0_CHECK(prob)
  516. {
  517. UPDATE_0_CHECK;
  518. state = 0;
  519. prob = probs + LenCoder;
  520. res = DUMMY_MATCH;
  521. }
  522. else
  523. {
  524. UPDATE_1_CHECK;
  525. res = DUMMY_REP;
  526. prob = probs + IsRepG0 + state;
  527. IF_BIT_0_CHECK(prob)
  528. {
  529. UPDATE_0_CHECK;
  530. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  531. IF_BIT_0_CHECK(prob)
  532. {
  533. UPDATE_0_CHECK;
  534. NORMALIZE_CHECK;
  535. return DUMMY_REP;
  536. }
  537. else
  538. {
  539. UPDATE_1_CHECK;
  540. }
  541. }
  542. else
  543. {
  544. UPDATE_1_CHECK;
  545. prob = probs + IsRepG1 + state;
  546. IF_BIT_0_CHECK(prob)
  547. {
  548. UPDATE_0_CHECK;
  549. }
  550. else
  551. {
  552. UPDATE_1_CHECK;
  553. prob = probs + IsRepG2 + state;
  554. IF_BIT_0_CHECK(prob)
  555. {
  556. UPDATE_0_CHECK;
  557. }
  558. else
  559. {
  560. UPDATE_1_CHECK;
  561. }
  562. }
  563. }
  564. state = kNumStates;
  565. prob = probs + RepLenCoder;
  566. }
  567. {
  568. unsigned limit, offset;
  569. CLzmaProb *probLen = prob + LenChoice;
  570. IF_BIT_0_CHECK(probLen)
  571. {
  572. UPDATE_0_CHECK;
  573. probLen = prob + LenLow + (posState << kLenNumLowBits);
  574. offset = 0;
  575. limit = 1 << kLenNumLowBits;
  576. }
  577. else
  578. {
  579. UPDATE_1_CHECK;
  580. probLen = prob + LenChoice2;
  581. IF_BIT_0_CHECK(probLen)
  582. {
  583. UPDATE_0_CHECK;
  584. probLen = prob + LenMid + (posState << kLenNumMidBits);
  585. offset = kLenNumLowSymbols;
  586. limit = 1 << kLenNumMidBits;
  587. }
  588. else
  589. {
  590. UPDATE_1_CHECK;
  591. probLen = prob + LenHigh;
  592. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  593. limit = 1 << kLenNumHighBits;
  594. }
  595. }
  596. TREE_DECODE_CHECK(probLen, limit, len);
  597. len += offset;
  598. }
  599. if (state < 4)
  600. {
  601. unsigned posSlot;
  602. prob = probs + PosSlot +
  603. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
  604. kNumPosSlotBits);
  605. TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
  606. if (posSlot >= kStartPosModelIndex)
  607. {
  608. int numDirectBits = ((posSlot >> 1) - 1);
  609. /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
  610. if (posSlot < kEndPosModelIndex)
  611. {
  612. prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
  613. }
  614. else
  615. {
  616. numDirectBits -= kNumAlignBits;
  617. do
  618. {
  619. NORMALIZE_CHECK
  620. range >>= 1;
  621. code -= range & (((code - range) >> 31) - 1);
  622. /* if (code >= range) code -= range; */
  623. }
  624. while (--numDirectBits != 0);
  625. prob = probs + Align;
  626. numDirectBits = kNumAlignBits;
  627. }
  628. {
  629. unsigned i = 1;
  630. do
  631. {
  632. GET_BIT_CHECK(prob + i, i);
  633. }
  634. while (--numDirectBits != 0);
  635. }
  636. }
  637. }
  638. }
  639. }
  640. NORMALIZE_CHECK;
  641. return res;
  642. }
  643. static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
  644. {
  645. p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
  646. p->range = 0xFFFFFFFF;
  647. p->needFlush = 0;
  648. }
  649. void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
  650. {
  651. p->needFlush = 1;
  652. p->remainLen = 0;
  653. p->tempBufSize = 0;
  654. if (initDic)
  655. {
  656. p->processedPos = 0;
  657. p->checkDicSize = 0;
  658. p->needInitState = 1;
  659. }
  660. if (initState)
  661. p->needInitState = 1;
  662. }
  663. void LzmaDec_Init(CLzmaDec *p)
  664. {
  665. p->dicPos = 0;
  666. LzmaDec_InitDicAndState(p, True, True);
  667. }
  668. static void LzmaDec_InitStateReal(CLzmaDec *p)
  669. {
  670. UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
  671. UInt32 i;
  672. CLzmaProb *probs = p->probs;
  673. for (i = 0; i < numProbs; i++)
  674. probs[i] = kBitModelTotal >> 1;
  675. p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
  676. p->state = 0;
  677. p->needInitState = 0;
  678. }
  679. SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
  680. ELzmaFinishMode finishMode, ELzmaStatus *status)
  681. {
  682. SizeT inSize = *srcLen;
  683. (*srcLen) = 0;
  684. LzmaDec_WriteRem(p, dicLimit);
  685. *status = LZMA_STATUS_NOT_SPECIFIED;
  686. while (p->remainLen != kMatchSpecLenStart)
  687. {
  688. int checkEndMarkNow;
  689. if (p->needFlush != 0)
  690. {
  691. for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
  692. p->tempBuf[p->tempBufSize++] = *src++;
  693. if (p->tempBufSize < RC_INIT_SIZE)
  694. {
  695. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  696. return SZ_OK;
  697. }
  698. if (p->tempBuf[0] != 0)
  699. return SZ_ERROR_DATA;
  700. LzmaDec_InitRc(p, p->tempBuf);
  701. p->tempBufSize = 0;
  702. }
  703. checkEndMarkNow = 0;
  704. if (p->dicPos >= dicLimit)
  705. {
  706. if (p->remainLen == 0 && p->code == 0)
  707. {
  708. *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
  709. return SZ_OK;
  710. }
  711. if (finishMode == LZMA_FINISH_ANY)
  712. {
  713. *status = LZMA_STATUS_NOT_FINISHED;
  714. return SZ_OK;
  715. }
  716. if (p->remainLen != 0)
  717. {
  718. *status = LZMA_STATUS_NOT_FINISHED;
  719. return SZ_ERROR_DATA;
  720. }
  721. checkEndMarkNow = 1;
  722. }
  723. if (p->needInitState)
  724. LzmaDec_InitStateReal(p);
  725. if (p->tempBufSize == 0)
  726. {
  727. SizeT processed;
  728. const Byte *bufLimit;
  729. if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  730. {
  731. int dummyRes = LzmaDec_TryDummy(p, src, inSize);
  732. if (dummyRes == DUMMY_ERROR)
  733. {
  734. memcpy(p->tempBuf, src, inSize);
  735. p->tempBufSize = (unsigned)inSize;
  736. (*srcLen) += inSize;
  737. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  738. return SZ_OK;
  739. }
  740. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  741. {
  742. *status = LZMA_STATUS_NOT_FINISHED;
  743. return SZ_ERROR_DATA;
  744. }
  745. bufLimit = src;
  746. }
  747. else
  748. bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
  749. p->buf = src;
  750. if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
  751. return SZ_ERROR_DATA;
  752. processed = (SizeT)(p->buf - src);
  753. (*srcLen) += processed;
  754. src += processed;
  755. inSize -= processed;
  756. }
  757. else
  758. {
  759. unsigned rem = p->tempBufSize, lookAhead = 0;
  760. while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
  761. p->tempBuf[rem++] = src[lookAhead++];
  762. p->tempBufSize = rem;
  763. if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  764. {
  765. int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
  766. if (dummyRes == DUMMY_ERROR)
  767. {
  768. (*srcLen) += lookAhead;
  769. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  770. return SZ_OK;
  771. }
  772. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  773. {
  774. *status = LZMA_STATUS_NOT_FINISHED;
  775. return SZ_ERROR_DATA;
  776. }
  777. }
  778. p->buf = p->tempBuf;
  779. if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
  780. return SZ_ERROR_DATA;
  781. lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
  782. (*srcLen) += lookAhead;
  783. src += lookAhead;
  784. inSize -= lookAhead;
  785. p->tempBufSize = 0;
  786. }
  787. }
  788. if (p->code == 0)
  789. *status = LZMA_STATUS_FINISHED_WITH_MARK;
  790. return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
  791. }
  792. SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
  793. {
  794. SizeT outSize = *destLen;
  795. SizeT inSize = *srcLen;
  796. *srcLen = *destLen = 0;
  797. for (;;)
  798. {
  799. SizeT inSizeCur = inSize, outSizeCur, dicPos;
  800. ELzmaFinishMode curFinishMode;
  801. SRes res;
  802. if (p->dicPos == p->dicBufSize)
  803. p->dicPos = 0;
  804. dicPos = p->dicPos;
  805. if (outSize > p->dicBufSize - dicPos)
  806. {
  807. outSizeCur = p->dicBufSize;
  808. curFinishMode = LZMA_FINISH_ANY;
  809. }
  810. else
  811. {
  812. outSizeCur = dicPos + outSize;
  813. curFinishMode = finishMode;
  814. }
  815. res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
  816. src += inSizeCur;
  817. inSize -= inSizeCur;
  818. *srcLen += inSizeCur;
  819. outSizeCur = p->dicPos - dicPos;
  820. memcpy(dest, p->dic + dicPos, outSizeCur);
  821. dest += outSizeCur;
  822. outSize -= outSizeCur;
  823. *destLen += outSizeCur;
  824. if (res != 0)
  825. return res;
  826. if (outSizeCur == 0 || outSize == 0)
  827. return SZ_OK;
  828. }
  829. }
  830. void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
  831. {
  832. alloc->Free(alloc, p->probs);
  833. p->probs = 0;
  834. }
  835. static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
  836. {
  837. alloc->Free(alloc, p->dic);
  838. p->dic = 0;
  839. }
  840. void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
  841. {
  842. LzmaDec_FreeProbs(p, alloc);
  843. LzmaDec_FreeDict(p, alloc);
  844. }
  845. SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
  846. {
  847. UInt32 dicSize;
  848. Byte d;
  849. if (size < LZMA_PROPS_SIZE)
  850. return SZ_ERROR_UNSUPPORTED;
  851. else
  852. dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
  853. if (dicSize < LZMA_DIC_MIN)
  854. dicSize = LZMA_DIC_MIN;
  855. p->dicSize = dicSize;
  856. d = data[0];
  857. if (d >= (9 * 5 * 5))
  858. return SZ_ERROR_UNSUPPORTED;
  859. p->lc = d % 9;
  860. d /= 9;
  861. p->pb = d / 5;
  862. p->lp = d % 5;
  863. return SZ_OK;
  864. }
  865. static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
  866. {
  867. UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
  868. if (p->probs == 0 || numProbs != p->numProbs)
  869. {
  870. LzmaDec_FreeProbs(p, alloc);
  871. p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
  872. p->numProbs = numProbs;
  873. if (p->probs == 0)
  874. return SZ_ERROR_MEM;
  875. }
  876. return SZ_OK;
  877. }
  878. SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
  879. {
  880. CLzmaProps propNew;
  881. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  882. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  883. p->prop = propNew;
  884. return SZ_OK;
  885. }
  886. SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
  887. {
  888. CLzmaProps propNew;
  889. SizeT dicBufSize;
  890. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  891. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  892. dicBufSize = propNew.dicSize;
  893. if (p->dic == 0 || dicBufSize != p->dicBufSize)
  894. {
  895. LzmaDec_FreeDict(p, alloc);
  896. p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
  897. if (p->dic == 0)
  898. {
  899. LzmaDec_FreeProbs(p, alloc);
  900. return SZ_ERROR_MEM;
  901. }
  902. }
  903. p->dicBufSize = dicBufSize;
  904. p->prop = propNew;
  905. return SZ_OK;
  906. }
  907. SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
  908. const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
  909. ELzmaStatus *status, ISzAlloc *alloc)
  910. {
  911. CLzmaDec p;
  912. SRes res;
  913. SizeT inSize = *srcLen;
  914. SizeT outSize = *destLen;
  915. *srcLen = *destLen = 0;
  916. if (inSize < RC_INIT_SIZE)
  917. return SZ_ERROR_INPUT_EOF;
  918. LzmaDec_Construct(&p);
  919. res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
  920. if (res != 0)
  921. return res;
  922. p.dic = dest;
  923. p.dicBufSize = outSize;
  924. LzmaDec_Init(&p);
  925. *srcLen = inSize;
  926. res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
  927. if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
  928. res = SZ_ERROR_INPUT_EOF;
  929. (*destLen) = p.dicPos;
  930. LzmaDec_FreeProbs(&p, alloc);
  931. return res;
  932. }