bignum.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469
  1. /*
  2. * Multi-precision integer library
  3. *
  4. * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. *
  19. * This file is part of mbed TLS (https://tls.mbed.org)
  20. */
  21. /*
  22. * The following sources were referenced in the design of this Multi-precision
  23. * Integer library:
  24. *
  25. * [1] Handbook of Applied Cryptography - 1997
  26. * Menezes, van Oorschot and Vanstone
  27. *
  28. * [2] Multi-Precision Math
  29. * Tom St Denis
  30. * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
  31. *
  32. * [3] GNU Multi-Precision Arithmetic Library
  33. * https://gmplib.org/manual/index.html
  34. *
  35. */
  36. #if !defined(MBEDTLS_CONFIG_FILE)
  37. #include "mbedtls/config.h"
  38. #else
  39. #include MBEDTLS_CONFIG_FILE
  40. #endif
  41. #if defined(MBEDTLS_BIGNUM_C)
  42. #include "mbedtls/bignum.h"
  43. #include "mbedtls/bn_mul.h"
  44. #include "mbedtls/platform_util.h"
  45. #include <string.h>
  46. #if defined(MBEDTLS_PLATFORM_C)
  47. #include "mbedtls/platform.h"
  48. #else
  49. #include <stdio.h>
  50. #include <stdlib.h>
  51. #define mbedtls_printf printf
  52. #define mbedtls_calloc calloc
  53. #define mbedtls_free free
  54. #endif
  55. #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
  56. #define biL (ciL << 3) /* bits in limb */
  57. #define biH (ciL << 2) /* half limb size */
  58. #define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
  59. /*
  60. * Convert between bits/chars and number of limbs
  61. * Divide first in order to avoid potential overflows
  62. */
  63. #define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
  64. #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
  65. /* Implementation that should never be optimized out by the compiler */
  66. static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
  67. {
  68. mbedtls_platform_zeroize( v, ciL * n );
  69. }
  70. /*
  71. * Initialize one MPI
  72. */
  73. void mbedtls_mpi_init( mbedtls_mpi *X )
  74. {
  75. if( X == NULL )
  76. return;
  77. X->s = 1;
  78. X->n = 0;
  79. X->p = NULL;
  80. }
  81. /*
  82. * Unallocate one MPI
  83. */
  84. void mbedtls_mpi_free( mbedtls_mpi *X )
  85. {
  86. if( X == NULL )
  87. return;
  88. if( X->p != NULL )
  89. {
  90. mbedtls_mpi_zeroize( X->p, X->n );
  91. mbedtls_free( X->p );
  92. }
  93. X->s = 1;
  94. X->n = 0;
  95. X->p = NULL;
  96. }
  97. /*
  98. * Enlarge to the specified number of limbs
  99. */
  100. int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
  101. {
  102. mbedtls_mpi_uint *p;
  103. if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
  104. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  105. if( X->n < nblimbs )
  106. {
  107. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
  108. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  109. if( X->p != NULL )
  110. {
  111. memcpy( p, X->p, X->n * ciL );
  112. mbedtls_mpi_zeroize( X->p, X->n );
  113. mbedtls_free( X->p );
  114. }
  115. X->n = nblimbs;
  116. X->p = p;
  117. }
  118. return( 0 );
  119. }
  120. /*
  121. * Resize down as much as possible,
  122. * while keeping at least the specified number of limbs
  123. */
  124. int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
  125. {
  126. mbedtls_mpi_uint *p;
  127. size_t i;
  128. /* Actually resize up in this case */
  129. if( X->n <= nblimbs )
  130. return( mbedtls_mpi_grow( X, nblimbs ) );
  131. for( i = X->n - 1; i > 0; i-- )
  132. if( X->p[i] != 0 )
  133. break;
  134. i++;
  135. if( i < nblimbs )
  136. i = nblimbs;
  137. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
  138. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  139. if( X->p != NULL )
  140. {
  141. memcpy( p, X->p, i * ciL );
  142. mbedtls_mpi_zeroize( X->p, X->n );
  143. mbedtls_free( X->p );
  144. }
  145. X->n = i;
  146. X->p = p;
  147. return( 0 );
  148. }
  149. /*
  150. * Copy the contents of Y into X
  151. */
  152. int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
  153. {
  154. int ret = 0;
  155. size_t i;
  156. if( X == Y )
  157. return( 0 );
  158. if( Y->p == NULL )
  159. {
  160. mbedtls_mpi_free( X );
  161. return( 0 );
  162. }
  163. for( i = Y->n - 1; i > 0; i-- )
  164. if( Y->p[i] != 0 )
  165. break;
  166. i++;
  167. X->s = Y->s;
  168. if( X->n < i )
  169. {
  170. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
  171. }
  172. else
  173. {
  174. memset( X->p + i, 0, ( X->n - i ) * ciL );
  175. }
  176. memcpy( X->p, Y->p, i * ciL );
  177. cleanup:
  178. return( ret );
  179. }
  180. /*
  181. * Swap the contents of X and Y
  182. */
  183. void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
  184. {
  185. mbedtls_mpi T;
  186. memcpy( &T, X, sizeof( mbedtls_mpi ) );
  187. memcpy( X, Y, sizeof( mbedtls_mpi ) );
  188. memcpy( Y, &T, sizeof( mbedtls_mpi ) );
  189. }
  190. /*
  191. * Conditionally assign X = Y, without leaking information
  192. * about whether the assignment was made or not.
  193. * (Leaking information about the respective sizes of X and Y is ok however.)
  194. */
  195. int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
  196. {
  197. int ret = 0;
  198. size_t i;
  199. /* make sure assign is 0 or 1 in a time-constant manner */
  200. assign = (assign | (unsigned char)-assign) >> 7;
  201. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  202. X->s = X->s * ( 1 - assign ) + Y->s * assign;
  203. for( i = 0; i < Y->n; i++ )
  204. X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign;
  205. for( ; i < X->n; i++ )
  206. X->p[i] *= ( 1 - assign );
  207. cleanup:
  208. return( ret );
  209. }
  210. /*
  211. * Conditionally swap X and Y, without leaking information
  212. * about whether the swap was made or not.
  213. * Here it is not ok to simply swap the pointers, which whould lead to
  214. * different memory access patterns when X and Y are used afterwards.
  215. */
  216. int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap )
  217. {
  218. int ret, s;
  219. size_t i;
  220. mbedtls_mpi_uint tmp;
  221. if( X == Y )
  222. return( 0 );
  223. /* make sure swap is 0 or 1 in a time-constant manner */
  224. swap = (swap | (unsigned char)-swap) >> 7;
  225. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  226. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
  227. s = X->s;
  228. X->s = X->s * ( 1 - swap ) + Y->s * swap;
  229. Y->s = Y->s * ( 1 - swap ) + s * swap;
  230. for( i = 0; i < X->n; i++ )
  231. {
  232. tmp = X->p[i];
  233. X->p[i] = X->p[i] * ( 1 - swap ) + Y->p[i] * swap;
  234. Y->p[i] = Y->p[i] * ( 1 - swap ) + tmp * swap;
  235. }
  236. cleanup:
  237. return( ret );
  238. }
  239. /*
  240. * Set value from integer
  241. */
  242. int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
  243. {
  244. int ret;
  245. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
  246. memset( X->p, 0, X->n * ciL );
  247. X->p[0] = ( z < 0 ) ? -z : z;
  248. X->s = ( z < 0 ) ? -1 : 1;
  249. cleanup:
  250. return( ret );
  251. }
  252. /*
  253. * Get a specific bit
  254. */
  255. int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
  256. {
  257. if( X->n * biL <= pos )
  258. return( 0 );
  259. return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
  260. }
  261. /*
  262. * Set a bit to a specific value of 0 or 1
  263. */
  264. int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
  265. {
  266. int ret = 0;
  267. size_t off = pos / biL;
  268. size_t idx = pos % biL;
  269. if( val != 0 && val != 1 )
  270. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  271. if( X->n * biL <= pos )
  272. {
  273. if( val == 0 )
  274. return( 0 );
  275. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
  276. }
  277. X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
  278. X->p[off] |= (mbedtls_mpi_uint) val << idx;
  279. cleanup:
  280. return( ret );
  281. }
  282. /*
  283. * Return the number of less significant zero-bits
  284. */
  285. size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
  286. {
  287. size_t i, j, count = 0;
  288. for( i = 0; i < X->n; i++ )
  289. for( j = 0; j < biL; j++, count++ )
  290. if( ( ( X->p[i] >> j ) & 1 ) != 0 )
  291. return( count );
  292. return( 0 );
  293. }
  294. /*
  295. * Count leading zero bits in a given integer
  296. */
  297. static size_t mbedtls_clz( const mbedtls_mpi_uint x )
  298. {
  299. size_t j;
  300. mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
  301. for( j = 0; j < biL; j++ )
  302. {
  303. if( x & mask ) break;
  304. mask >>= 1;
  305. }
  306. return j;
  307. }
  308. /*
  309. * Return the number of bits
  310. */
  311. size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
  312. {
  313. size_t i, j;
  314. if( X->n == 0 )
  315. return( 0 );
  316. for( i = X->n - 1; i > 0; i-- )
  317. if( X->p[i] != 0 )
  318. break;
  319. j = biL - mbedtls_clz( X->p[i] );
  320. return( ( i * biL ) + j );
  321. }
  322. /*
  323. * Return the total size in bytes
  324. */
  325. size_t mbedtls_mpi_size( const mbedtls_mpi *X )
  326. {
  327. return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
  328. }
  329. /*
  330. * Convert an ASCII character to digit value
  331. */
  332. static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
  333. {
  334. *d = 255;
  335. if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
  336. if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
  337. if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
  338. if( *d >= (mbedtls_mpi_uint) radix )
  339. return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
  340. return( 0 );
  341. }
  342. /*
  343. * Import from an ASCII string
  344. */
  345. int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
  346. {
  347. int ret;
  348. size_t i, j, slen, n;
  349. mbedtls_mpi_uint d;
  350. mbedtls_mpi T;
  351. if( radix < 2 || radix > 16 )
  352. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  353. mbedtls_mpi_init( &T );
  354. slen = strlen( s );
  355. if( radix == 16 )
  356. {
  357. if( slen > MPI_SIZE_T_MAX >> 2 )
  358. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  359. n = BITS_TO_LIMBS( slen << 2 );
  360. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
  361. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  362. for( i = slen, j = 0; i > 0; i--, j++ )
  363. {
  364. if( i == 1 && s[i - 1] == '-' )
  365. {
  366. X->s = -1;
  367. break;
  368. }
  369. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
  370. X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
  371. }
  372. }
  373. else
  374. {
  375. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  376. for( i = 0; i < slen; i++ )
  377. {
  378. if( i == 0 && s[i] == '-' )
  379. {
  380. X->s = -1;
  381. continue;
  382. }
  383. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
  384. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
  385. if( X->s == 1 )
  386. {
  387. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
  388. }
  389. else
  390. {
  391. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( X, &T, d ) );
  392. }
  393. }
  394. }
  395. cleanup:
  396. mbedtls_mpi_free( &T );
  397. return( ret );
  398. }
  399. /*
  400. * Helper to write the digits high-order first
  401. */
  402. static int mpi_write_hlp( mbedtls_mpi *X, int radix, char **p )
  403. {
  404. int ret;
  405. mbedtls_mpi_uint r;
  406. if( radix < 2 || radix > 16 )
  407. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  408. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
  409. MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
  410. if( mbedtls_mpi_cmp_int( X, 0 ) != 0 )
  411. MBEDTLS_MPI_CHK( mpi_write_hlp( X, radix, p ) );
  412. if( r < 10 )
  413. *(*p)++ = (char)( r + 0x30 );
  414. else
  415. *(*p)++ = (char)( r + 0x37 );
  416. cleanup:
  417. return( ret );
  418. }
  419. /*
  420. * Export into an ASCII string
  421. */
  422. int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
  423. char *buf, size_t buflen, size_t *olen )
  424. {
  425. int ret = 0;
  426. size_t n;
  427. char *p;
  428. mbedtls_mpi T;
  429. if( radix < 2 || radix > 16 )
  430. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  431. n = mbedtls_mpi_bitlen( X );
  432. if( radix >= 4 ) n >>= 1;
  433. if( radix >= 16 ) n >>= 1;
  434. /*
  435. * Round up the buffer length to an even value to ensure that there is
  436. * enough room for hexadecimal values that can be represented in an odd
  437. * number of digits.
  438. */
  439. n += 3 + ( ( n + 1 ) & 1 );
  440. if( buflen < n )
  441. {
  442. *olen = n;
  443. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  444. }
  445. p = buf;
  446. mbedtls_mpi_init( &T );
  447. if( X->s == -1 )
  448. *p++ = '-';
  449. if( radix == 16 )
  450. {
  451. int c;
  452. size_t i, j, k;
  453. for( i = X->n, k = 0; i > 0; i-- )
  454. {
  455. for( j = ciL; j > 0; j-- )
  456. {
  457. c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
  458. if( c == 0 && k == 0 && ( i + j ) != 2 )
  459. continue;
  460. *(p++) = "0123456789ABCDEF" [c / 16];
  461. *(p++) = "0123456789ABCDEF" [c % 16];
  462. k = 1;
  463. }
  464. }
  465. }
  466. else
  467. {
  468. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
  469. if( T.s == -1 )
  470. T.s = 1;
  471. MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p ) );
  472. }
  473. *p++ = '\0';
  474. *olen = p - buf;
  475. cleanup:
  476. mbedtls_mpi_free( &T );
  477. return( ret );
  478. }
  479. #if defined(MBEDTLS_FS_IO)
  480. /*
  481. * Read X from an opened file
  482. */
  483. int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
  484. {
  485. mbedtls_mpi_uint d;
  486. size_t slen;
  487. char *p;
  488. /*
  489. * Buffer should have space for (short) label and decimal formatted MPI,
  490. * newline characters and '\0'
  491. */
  492. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  493. memset( s, 0, sizeof( s ) );
  494. if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
  495. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  496. slen = strlen( s );
  497. if( slen == sizeof( s ) - 2 )
  498. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  499. if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
  500. if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
  501. p = s + slen;
  502. while( p-- > s )
  503. if( mpi_get_digit( &d, radix, *p ) != 0 )
  504. break;
  505. return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
  506. }
  507. /*
  508. * Write X into an opened file (or stdout if fout == NULL)
  509. */
  510. int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
  511. {
  512. int ret;
  513. size_t n, slen, plen;
  514. /*
  515. * Buffer should have space for (short) label and decimal formatted MPI,
  516. * newline characters and '\0'
  517. */
  518. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  519. memset( s, 0, sizeof( s ) );
  520. MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
  521. if( p == NULL ) p = "";
  522. plen = strlen( p );
  523. slen = strlen( s );
  524. s[slen++] = '\r';
  525. s[slen++] = '\n';
  526. if( fout != NULL )
  527. {
  528. if( fwrite( p, 1, plen, fout ) != plen ||
  529. fwrite( s, 1, slen, fout ) != slen )
  530. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  531. }
  532. else
  533. mbedtls_printf( "%s%s", p, s );
  534. cleanup:
  535. return( ret );
  536. }
  537. #endif /* MBEDTLS_FS_IO */
  538. /*
  539. * Import X from unsigned binary data, big endian
  540. */
  541. int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
  542. {
  543. int ret;
  544. size_t i, j;
  545. size_t const limbs = CHARS_TO_LIMBS( buflen );
  546. /* Ensure that target MPI has exactly the necessary number of limbs */
  547. if( X->n != limbs )
  548. {
  549. mbedtls_mpi_free( X );
  550. mbedtls_mpi_init( X );
  551. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, limbs ) );
  552. }
  553. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  554. for( i = buflen, j = 0; i > 0; i--, j++ )
  555. X->p[j / ciL] |= ((mbedtls_mpi_uint) buf[i - 1]) << ((j % ciL) << 3);
  556. cleanup:
  557. return( ret );
  558. }
  559. /*
  560. * Export X into unsigned binary data, big endian
  561. */
  562. int mbedtls_mpi_write_binary( const mbedtls_mpi *X, unsigned char *buf, size_t buflen )
  563. {
  564. size_t i, j, n;
  565. n = mbedtls_mpi_size( X );
  566. if( buflen < n )
  567. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  568. memset( buf, 0, buflen );
  569. for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )
  570. buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );
  571. return( 0 );
  572. }
  573. /*
  574. * Left-shift: X <<= count
  575. */
  576. int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
  577. {
  578. int ret;
  579. size_t i, v0, t1;
  580. mbedtls_mpi_uint r0 = 0, r1;
  581. v0 = count / (biL );
  582. t1 = count & (biL - 1);
  583. i = mbedtls_mpi_bitlen( X ) + count;
  584. if( X->n * biL < i )
  585. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
  586. ret = 0;
  587. /*
  588. * shift by count / limb_size
  589. */
  590. if( v0 > 0 )
  591. {
  592. for( i = X->n; i > v0; i-- )
  593. X->p[i - 1] = X->p[i - v0 - 1];
  594. for( ; i > 0; i-- )
  595. X->p[i - 1] = 0;
  596. }
  597. /*
  598. * shift by count % limb_size
  599. */
  600. if( t1 > 0 )
  601. {
  602. for( i = v0; i < X->n; i++ )
  603. {
  604. r1 = X->p[i] >> (biL - t1);
  605. X->p[i] <<= t1;
  606. X->p[i] |= r0;
  607. r0 = r1;
  608. }
  609. }
  610. cleanup:
  611. return( ret );
  612. }
  613. /*
  614. * Right-shift: X >>= count
  615. */
  616. int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
  617. {
  618. size_t i, v0, v1;
  619. mbedtls_mpi_uint r0 = 0, r1;
  620. v0 = count / biL;
  621. v1 = count & (biL - 1);
  622. if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
  623. return mbedtls_mpi_lset( X, 0 );
  624. /*
  625. * shift by count / limb_size
  626. */
  627. if( v0 > 0 )
  628. {
  629. for( i = 0; i < X->n - v0; i++ )
  630. X->p[i] = X->p[i + v0];
  631. for( ; i < X->n; i++ )
  632. X->p[i] = 0;
  633. }
  634. /*
  635. * shift by count % limb_size
  636. */
  637. if( v1 > 0 )
  638. {
  639. for( i = X->n; i > 0; i-- )
  640. {
  641. r1 = X->p[i - 1] << (biL - v1);
  642. X->p[i - 1] >>= v1;
  643. X->p[i - 1] |= r0;
  644. r0 = r1;
  645. }
  646. }
  647. return( 0 );
  648. }
  649. /*
  650. * Compare unsigned values
  651. */
  652. int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  653. {
  654. size_t i, j;
  655. for( i = X->n; i > 0; i-- )
  656. if( X->p[i - 1] != 0 )
  657. break;
  658. for( j = Y->n; j > 0; j-- )
  659. if( Y->p[j - 1] != 0 )
  660. break;
  661. if( i == 0 && j == 0 )
  662. return( 0 );
  663. if( i > j ) return( 1 );
  664. if( j > i ) return( -1 );
  665. for( ; i > 0; i-- )
  666. {
  667. if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
  668. if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
  669. }
  670. return( 0 );
  671. }
  672. /*
  673. * Compare signed values
  674. */
  675. int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  676. {
  677. size_t i, j;
  678. for( i = X->n; i > 0; i-- )
  679. if( X->p[i - 1] != 0 )
  680. break;
  681. for( j = Y->n; j > 0; j-- )
  682. if( Y->p[j - 1] != 0 )
  683. break;
  684. if( i == 0 && j == 0 )
  685. return( 0 );
  686. if( i > j ) return( X->s );
  687. if( j > i ) return( -Y->s );
  688. if( X->s > 0 && Y->s < 0 ) return( 1 );
  689. if( Y->s > 0 && X->s < 0 ) return( -1 );
  690. for( ; i > 0; i-- )
  691. {
  692. if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
  693. if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
  694. }
  695. return( 0 );
  696. }
  697. /*
  698. * Compare signed values
  699. */
  700. int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
  701. {
  702. mbedtls_mpi Y;
  703. mbedtls_mpi_uint p[1];
  704. *p = ( z < 0 ) ? -z : z;
  705. Y.s = ( z < 0 ) ? -1 : 1;
  706. Y.n = 1;
  707. Y.p = p;
  708. return( mbedtls_mpi_cmp_mpi( X, &Y ) );
  709. }
  710. /*
  711. * Unsigned addition: X = |A| + |B| (HAC 14.7)
  712. */
  713. int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  714. {
  715. int ret;
  716. size_t i, j;
  717. mbedtls_mpi_uint *o, *p, c, tmp;
  718. if( X == B )
  719. {
  720. const mbedtls_mpi *T = A; A = X; B = T;
  721. }
  722. if( X != A )
  723. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  724. /*
  725. * X should always be positive as a result of unsigned additions.
  726. */
  727. X->s = 1;
  728. for( j = B->n; j > 0; j-- )
  729. if( B->p[j - 1] != 0 )
  730. break;
  731. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  732. o = B->p; p = X->p; c = 0;
  733. /*
  734. * tmp is used because it might happen that p == o
  735. */
  736. for( i = 0; i < j; i++, o++, p++ )
  737. {
  738. tmp= *o;
  739. *p += c; c = ( *p < c );
  740. *p += tmp; c += ( *p < tmp );
  741. }
  742. while( c != 0 )
  743. {
  744. if( i >= X->n )
  745. {
  746. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
  747. p = X->p + i;
  748. }
  749. *p += c; c = ( *p < c ); i++; p++;
  750. }
  751. cleanup:
  752. return( ret );
  753. }
  754. /*
  755. * Helper for mbedtls_mpi subtraction
  756. */
  757. static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d )
  758. {
  759. size_t i;
  760. mbedtls_mpi_uint c, z;
  761. for( i = c = 0; i < n; i++, s++, d++ )
  762. {
  763. z = ( *d < c ); *d -= c;
  764. c = ( *d < *s ) + z; *d -= *s;
  765. }
  766. while( c != 0 )
  767. {
  768. z = ( *d < c ); *d -= c;
  769. c = z; d++;
  770. }
  771. }
  772. /*
  773. * Unsigned subtraction: X = |A| - |B| (HAC 14.9)
  774. */
  775. int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  776. {
  777. mbedtls_mpi TB;
  778. int ret;
  779. size_t n;
  780. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  781. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  782. mbedtls_mpi_init( &TB );
  783. if( X == B )
  784. {
  785. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  786. B = &TB;
  787. }
  788. if( X != A )
  789. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  790. /*
  791. * X should always be positive as a result of unsigned subtractions.
  792. */
  793. X->s = 1;
  794. ret = 0;
  795. for( n = B->n; n > 0; n-- )
  796. if( B->p[n - 1] != 0 )
  797. break;
  798. mpi_sub_hlp( n, B->p, X->p );
  799. cleanup:
  800. mbedtls_mpi_free( &TB );
  801. return( ret );
  802. }
  803. /*
  804. * Signed addition: X = A + B
  805. */
  806. int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  807. {
  808. int ret, s = A->s;
  809. if( A->s * B->s < 0 )
  810. {
  811. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  812. {
  813. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  814. X->s = s;
  815. }
  816. else
  817. {
  818. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  819. X->s = -s;
  820. }
  821. }
  822. else
  823. {
  824. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  825. X->s = s;
  826. }
  827. cleanup:
  828. return( ret );
  829. }
  830. /*
  831. * Signed subtraction: X = A - B
  832. */
  833. int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  834. {
  835. int ret, s = A->s;
  836. if( A->s * B->s > 0 )
  837. {
  838. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  839. {
  840. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  841. X->s = s;
  842. }
  843. else
  844. {
  845. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  846. X->s = -s;
  847. }
  848. }
  849. else
  850. {
  851. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  852. X->s = s;
  853. }
  854. cleanup:
  855. return( ret );
  856. }
  857. /*
  858. * Signed addition: X = A + b
  859. */
  860. int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  861. {
  862. mbedtls_mpi _B;
  863. mbedtls_mpi_uint p[1];
  864. p[0] = ( b < 0 ) ? -b : b;
  865. _B.s = ( b < 0 ) ? -1 : 1;
  866. _B.n = 1;
  867. _B.p = p;
  868. return( mbedtls_mpi_add_mpi( X, A, &_B ) );
  869. }
  870. /*
  871. * Signed subtraction: X = A - b
  872. */
  873. int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  874. {
  875. mbedtls_mpi _B;
  876. mbedtls_mpi_uint p[1];
  877. p[0] = ( b < 0 ) ? -b : b;
  878. _B.s = ( b < 0 ) ? -1 : 1;
  879. _B.n = 1;
  880. _B.p = p;
  881. return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
  882. }
  883. /*
  884. * Helper for mbedtls_mpi multiplication
  885. */
  886. static
  887. #if defined(__APPLE__) && defined(__arm__)
  888. /*
  889. * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
  890. * appears to need this to prevent bad ARM code generation at -O3.
  891. */
  892. __attribute__ ((noinline))
  893. #endif
  894. void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
  895. {
  896. mbedtls_mpi_uint c = 0, t = 0;
  897. #if defined(MULADDC_HUIT)
  898. for( ; i >= 8; i -= 8 )
  899. {
  900. MULADDC_INIT
  901. MULADDC_HUIT
  902. MULADDC_STOP
  903. }
  904. for( ; i > 0; i-- )
  905. {
  906. MULADDC_INIT
  907. MULADDC_CORE
  908. MULADDC_STOP
  909. }
  910. #else /* MULADDC_HUIT */
  911. for( ; i >= 16; i -= 16 )
  912. {
  913. MULADDC_INIT
  914. MULADDC_CORE MULADDC_CORE
  915. MULADDC_CORE MULADDC_CORE
  916. MULADDC_CORE MULADDC_CORE
  917. MULADDC_CORE MULADDC_CORE
  918. MULADDC_CORE MULADDC_CORE
  919. MULADDC_CORE MULADDC_CORE
  920. MULADDC_CORE MULADDC_CORE
  921. MULADDC_CORE MULADDC_CORE
  922. MULADDC_STOP
  923. }
  924. for( ; i >= 8; i -= 8 )
  925. {
  926. MULADDC_INIT
  927. MULADDC_CORE MULADDC_CORE
  928. MULADDC_CORE MULADDC_CORE
  929. MULADDC_CORE MULADDC_CORE
  930. MULADDC_CORE MULADDC_CORE
  931. MULADDC_STOP
  932. }
  933. for( ; i > 0; i-- )
  934. {
  935. MULADDC_INIT
  936. MULADDC_CORE
  937. MULADDC_STOP
  938. }
  939. #endif /* MULADDC_HUIT */
  940. t++;
  941. do {
  942. *d += c; c = ( *d < c ); d++;
  943. }
  944. while( c != 0 );
  945. }
  946. /*
  947. * Baseline multiplication: X = A * B (HAC 14.12)
  948. */
  949. int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  950. {
  951. int ret;
  952. size_t i, j;
  953. mbedtls_mpi TA, TB;
  954. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  955. if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
  956. if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
  957. for( i = A->n; i > 0; i-- )
  958. if( A->p[i - 1] != 0 )
  959. break;
  960. for( j = B->n; j > 0; j-- )
  961. if( B->p[j - 1] != 0 )
  962. break;
  963. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
  964. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  965. for( ; j > 0; j-- )
  966. mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
  967. X->s = A->s * B->s;
  968. cleanup:
  969. mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
  970. return( ret );
  971. }
  972. /*
  973. * Baseline multiplication: X = A * b
  974. */
  975. int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
  976. {
  977. mbedtls_mpi _B;
  978. mbedtls_mpi_uint p[1];
  979. _B.s = 1;
  980. _B.n = 1;
  981. _B.p = p;
  982. p[0] = b;
  983. return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
  984. }
  985. /*
  986. * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
  987. * mbedtls_mpi_uint divisor, d
  988. */
  989. static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
  990. mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
  991. {
  992. #if defined(MBEDTLS_HAVE_UDBL)
  993. mbedtls_t_udbl dividend, quotient;
  994. #else
  995. const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
  996. const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
  997. mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
  998. mbedtls_mpi_uint u0_msw, u0_lsw;
  999. size_t s;
  1000. #endif
  1001. /*
  1002. * Check for overflow
  1003. */
  1004. if( 0 == d || u1 >= d )
  1005. {
  1006. if (r != NULL) *r = ~0;
  1007. return ( ~0 );
  1008. }
  1009. #if defined(MBEDTLS_HAVE_UDBL)
  1010. dividend = (mbedtls_t_udbl) u1 << biL;
  1011. dividend |= (mbedtls_t_udbl) u0;
  1012. quotient = dividend / d;
  1013. if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
  1014. quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
  1015. if( r != NULL )
  1016. *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
  1017. return (mbedtls_mpi_uint) quotient;
  1018. #else
  1019. /*
  1020. * Algorithm D, Section 4.3.1 - The Art of Computer Programming
  1021. * Vol. 2 - Seminumerical Algorithms, Knuth
  1022. */
  1023. /*
  1024. * Normalize the divisor, d, and dividend, u0, u1
  1025. */
  1026. s = mbedtls_clz( d );
  1027. d = d << s;
  1028. u1 = u1 << s;
  1029. u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
  1030. u0 = u0 << s;
  1031. d1 = d >> biH;
  1032. d0 = d & uint_halfword_mask;
  1033. u0_msw = u0 >> biH;
  1034. u0_lsw = u0 & uint_halfword_mask;
  1035. /*
  1036. * Find the first quotient and remainder
  1037. */
  1038. q1 = u1 / d1;
  1039. r0 = u1 - d1 * q1;
  1040. while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
  1041. {
  1042. q1 -= 1;
  1043. r0 += d1;
  1044. if ( r0 >= radix ) break;
  1045. }
  1046. rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
  1047. q0 = rAX / d1;
  1048. r0 = rAX - q0 * d1;
  1049. while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
  1050. {
  1051. q0 -= 1;
  1052. r0 += d1;
  1053. if ( r0 >= radix ) break;
  1054. }
  1055. if (r != NULL)
  1056. *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
  1057. quotient = q1 * radix + q0;
  1058. return quotient;
  1059. #endif
  1060. }
  1061. /*
  1062. * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
  1063. */
  1064. int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1065. {
  1066. int ret;
  1067. size_t i, n, t, k;
  1068. mbedtls_mpi X, Y, Z, T1, T2;
  1069. if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
  1070. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1071. mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
  1072. mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );
  1073. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  1074. {
  1075. if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
  1076. if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
  1077. return( 0 );
  1078. }
  1079. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
  1080. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
  1081. X.s = Y.s = 1;
  1082. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
  1083. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
  1084. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, 2 ) );
  1085. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T2, 3 ) );
  1086. k = mbedtls_mpi_bitlen( &Y ) % biL;
  1087. if( k < biL - 1 )
  1088. {
  1089. k = biL - 1 - k;
  1090. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
  1091. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
  1092. }
  1093. else k = 0;
  1094. n = X.n - 1;
  1095. t = Y.n - 1;
  1096. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
  1097. while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
  1098. {
  1099. Z.p[n - t]++;
  1100. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
  1101. }
  1102. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
  1103. for( i = n; i > t ; i-- )
  1104. {
  1105. if( X.p[i] >= Y.p[t] )
  1106. Z.p[i - t - 1] = ~0;
  1107. else
  1108. {
  1109. Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
  1110. Y.p[t], NULL);
  1111. }
  1112. Z.p[i - t - 1]++;
  1113. do
  1114. {
  1115. Z.p[i - t - 1]--;
  1116. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
  1117. T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
  1118. T1.p[1] = Y.p[t];
  1119. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
  1120. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T2, 0 ) );
  1121. T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
  1122. T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
  1123. T2.p[2] = X.p[i];
  1124. }
  1125. while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
  1126. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
  1127. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1128. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
  1129. if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
  1130. {
  1131. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
  1132. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1133. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
  1134. Z.p[i - t - 1]--;
  1135. }
  1136. }
  1137. if( Q != NULL )
  1138. {
  1139. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
  1140. Q->s = A->s * B->s;
  1141. }
  1142. if( R != NULL )
  1143. {
  1144. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
  1145. X.s = A->s;
  1146. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
  1147. if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
  1148. R->s = 1;
  1149. }
  1150. cleanup:
  1151. mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
  1152. mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );
  1153. return( ret );
  1154. }
  1155. /*
  1156. * Division by int: A = Q * b + R
  1157. */
  1158. int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1159. {
  1160. mbedtls_mpi _B;
  1161. mbedtls_mpi_uint p[1];
  1162. p[0] = ( b < 0 ) ? -b : b;
  1163. _B.s = ( b < 0 ) ? -1 : 1;
  1164. _B.n = 1;
  1165. _B.p = p;
  1166. return( mbedtls_mpi_div_mpi( Q, R, A, &_B ) );
  1167. }
  1168. /*
  1169. * Modulo: R = A mod B
  1170. */
  1171. int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1172. {
  1173. int ret;
  1174. if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
  1175. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1176. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
  1177. while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
  1178. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
  1179. while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
  1180. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
  1181. cleanup:
  1182. return( ret );
  1183. }
  1184. /*
  1185. * Modulo: r = A mod b
  1186. */
  1187. int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1188. {
  1189. size_t i;
  1190. mbedtls_mpi_uint x, y, z;
  1191. if( b == 0 )
  1192. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1193. if( b < 0 )
  1194. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1195. /*
  1196. * handle trivial cases
  1197. */
  1198. if( b == 1 )
  1199. {
  1200. *r = 0;
  1201. return( 0 );
  1202. }
  1203. if( b == 2 )
  1204. {
  1205. *r = A->p[0] & 1;
  1206. return( 0 );
  1207. }
  1208. /*
  1209. * general case
  1210. */
  1211. for( i = A->n, y = 0; i > 0; i-- )
  1212. {
  1213. x = A->p[i - 1];
  1214. y = ( y << biH ) | ( x >> biH );
  1215. z = y / b;
  1216. y -= z * b;
  1217. x <<= biH;
  1218. y = ( y << biH ) | ( x >> biH );
  1219. z = y / b;
  1220. y -= z * b;
  1221. }
  1222. /*
  1223. * If A is negative, then the current y represents a negative value.
  1224. * Flipping it to the positive side.
  1225. */
  1226. if( A->s < 0 && y != 0 )
  1227. y = b - y;
  1228. *r = y;
  1229. return( 0 );
  1230. }
  1231. /*
  1232. * Fast Montgomery initialization (thanks to Tom St Denis)
  1233. */
  1234. static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
  1235. {
  1236. mbedtls_mpi_uint x, m0 = N->p[0];
  1237. unsigned int i;
  1238. x = m0;
  1239. x += ( ( m0 + 2 ) & 4 ) << 1;
  1240. for( i = biL; i >= 8; i /= 2 )
  1241. x *= ( 2 - ( m0 * x ) );
  1242. *mm = ~x + 1;
  1243. }
  1244. /*
  1245. * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
  1246. */
  1247. static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
  1248. const mbedtls_mpi *T )
  1249. {
  1250. size_t i, n, m;
  1251. mbedtls_mpi_uint u0, u1, *d;
  1252. if( T->n < N->n + 1 || T->p == NULL )
  1253. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1254. memset( T->p, 0, T->n * ciL );
  1255. d = T->p;
  1256. n = N->n;
  1257. m = ( B->n < n ) ? B->n : n;
  1258. for( i = 0; i < n; i++ )
  1259. {
  1260. /*
  1261. * T = (T + u0*B + u1*N) / 2^biL
  1262. */
  1263. u0 = A->p[i];
  1264. u1 = ( d[0] + u0 * B->p[0] ) * mm;
  1265. mpi_mul_hlp( m, B->p, d, u0 );
  1266. mpi_mul_hlp( n, N->p, d, u1 );
  1267. *d++ = u0; d[n + 1] = 0;
  1268. }
  1269. memcpy( A->p, d, ( n + 1 ) * ciL );
  1270. if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
  1271. mpi_sub_hlp( n, N->p, A->p );
  1272. else
  1273. /* prevent timing attacks */
  1274. mpi_sub_hlp( n, A->p, T->p );
  1275. return( 0 );
  1276. }
  1277. /*
  1278. * Montgomery reduction: A = A * R^-1 mod N
  1279. */
  1280. static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T )
  1281. {
  1282. mbedtls_mpi_uint z = 1;
  1283. mbedtls_mpi U;
  1284. U.n = U.s = (int) z;
  1285. U.p = &z;
  1286. return( mpi_montmul( A, &U, N, mm, T ) );
  1287. }
  1288. /*
  1289. * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
  1290. */
  1291. int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const mbedtls_mpi *N, mbedtls_mpi *_RR )
  1292. {
  1293. int ret;
  1294. size_t wbits, wsize, one = 1;
  1295. size_t i, j, nblimbs;
  1296. size_t bufsize, nbits;
  1297. mbedtls_mpi_uint ei, mm, state;
  1298. mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;
  1299. int neg;
  1300. if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
  1301. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1302. if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
  1303. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1304. /*
  1305. * Init temps and window size
  1306. */
  1307. mpi_montg_init( &mm, N );
  1308. mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
  1309. mbedtls_mpi_init( &Apos );
  1310. memset( W, 0, sizeof( W ) );
  1311. i = mbedtls_mpi_bitlen( E );
  1312. wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
  1313. ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
  1314. if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
  1315. wsize = MBEDTLS_MPI_WINDOW_SIZE;
  1316. j = N->n + 1;
  1317. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  1318. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
  1319. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
  1320. /*
  1321. * Compensate for negative A (and correct at the end)
  1322. */
  1323. neg = ( A->s == -1 );
  1324. if( neg )
  1325. {
  1326. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
  1327. Apos.s = 1;
  1328. A = &Apos;
  1329. }
  1330. /*
  1331. * If 1st call, pre-compute R^2 mod N
  1332. */
  1333. if( _RR == NULL || _RR->p == NULL )
  1334. {
  1335. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
  1336. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
  1337. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
  1338. if( _RR != NULL )
  1339. memcpy( _RR, &RR, sizeof( mbedtls_mpi ) );
  1340. }
  1341. else
  1342. memcpy( &RR, _RR, sizeof( mbedtls_mpi ) );
  1343. /*
  1344. * W[1] = A * R^2 * R^-1 mod N = A * R mod N
  1345. */
  1346. if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
  1347. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
  1348. else
  1349. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
  1350. MBEDTLS_MPI_CHK( mpi_montmul( &W[1], &RR, N, mm, &T ) );
  1351. /*
  1352. * X = R^2 * R^-1 mod N = R mod N
  1353. */
  1354. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
  1355. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1356. if( wsize > 1 )
  1357. {
  1358. /*
  1359. * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
  1360. */
  1361. j = one << ( wsize - 1 );
  1362. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
  1363. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
  1364. for( i = 0; i < wsize - 1; i++ )
  1365. MBEDTLS_MPI_CHK( mpi_montmul( &W[j], &W[j], N, mm, &T ) );
  1366. /*
  1367. * W[i] = W[i - 1] * W[1]
  1368. */
  1369. for( i = j + 1; i < ( one << wsize ); i++ )
  1370. {
  1371. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
  1372. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
  1373. MBEDTLS_MPI_CHK( mpi_montmul( &W[i], &W[1], N, mm, &T ) );
  1374. }
  1375. }
  1376. nblimbs = E->n;
  1377. bufsize = 0;
  1378. nbits = 0;
  1379. wbits = 0;
  1380. state = 0;
  1381. while( 1 )
  1382. {
  1383. if( bufsize == 0 )
  1384. {
  1385. if( nblimbs == 0 )
  1386. break;
  1387. nblimbs--;
  1388. bufsize = sizeof( mbedtls_mpi_uint ) << 3;
  1389. }
  1390. bufsize--;
  1391. ei = (E->p[nblimbs] >> bufsize) & 1;
  1392. /*
  1393. * skip leading 0s
  1394. */
  1395. if( ei == 0 && state == 0 )
  1396. continue;
  1397. if( ei == 0 && state == 1 )
  1398. {
  1399. /*
  1400. * out of window, square X
  1401. */
  1402. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1403. continue;
  1404. }
  1405. /*
  1406. * add ei to current window
  1407. */
  1408. state = 2;
  1409. nbits++;
  1410. wbits |= ( ei << ( wsize - nbits ) );
  1411. if( nbits == wsize )
  1412. {
  1413. /*
  1414. * X = X^wsize R^-1 mod N
  1415. */
  1416. for( i = 0; i < wsize; i++ )
  1417. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1418. /*
  1419. * X = X * W[wbits] R^-1 mod N
  1420. */
  1421. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[wbits], N, mm, &T ) );
  1422. state--;
  1423. nbits = 0;
  1424. wbits = 0;
  1425. }
  1426. }
  1427. /*
  1428. * process the remaining bits
  1429. */
  1430. for( i = 0; i < nbits; i++ )
  1431. {
  1432. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1433. wbits <<= 1;
  1434. if( ( wbits & ( one << wsize ) ) != 0 )
  1435. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[1], N, mm, &T ) );
  1436. }
  1437. /*
  1438. * X = A^E * R * R^-1 mod N = A^E mod N
  1439. */
  1440. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1441. if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
  1442. {
  1443. X->s = -1;
  1444. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
  1445. }
  1446. cleanup:
  1447. for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
  1448. mbedtls_mpi_free( &W[i] );
  1449. mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
  1450. if( _RR == NULL || _RR->p == NULL )
  1451. mbedtls_mpi_free( &RR );
  1452. return( ret );
  1453. }
  1454. /*
  1455. * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
  1456. */
  1457. int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1458. {
  1459. int ret;
  1460. size_t lz, lzt;
  1461. mbedtls_mpi TG, TA, TB;
  1462. mbedtls_mpi_init( &TG ); mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  1463. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
  1464. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  1465. lz = mbedtls_mpi_lsb( &TA );
  1466. lzt = mbedtls_mpi_lsb( &TB );
  1467. if( lzt < lz )
  1468. lz = lzt;
  1469. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, lz ) );
  1470. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, lz ) );
  1471. TA.s = TB.s = 1;
  1472. while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
  1473. {
  1474. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
  1475. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
  1476. if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
  1477. {
  1478. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
  1479. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
  1480. }
  1481. else
  1482. {
  1483. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
  1484. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
  1485. }
  1486. }
  1487. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
  1488. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
  1489. cleanup:
  1490. mbedtls_mpi_free( &TG ); mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
  1491. return( ret );
  1492. }
  1493. /*
  1494. * Fill X with size bytes of random.
  1495. *
  1496. * Use a temporary bytes representation to make sure the result is the same
  1497. * regardless of the platform endianness (useful when f_rng is actually
  1498. * deterministic, eg for tests).
  1499. */
  1500. int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
  1501. int (*f_rng)(void *, unsigned char *, size_t),
  1502. void *p_rng )
  1503. {
  1504. int ret;
  1505. unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
  1506. if( size > MBEDTLS_MPI_MAX_SIZE )
  1507. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1508. MBEDTLS_MPI_CHK( f_rng( p_rng, buf, size ) );
  1509. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( X, buf, size ) );
  1510. cleanup:
  1511. mbedtls_platform_zeroize( buf, sizeof( buf ) );
  1512. return( ret );
  1513. }
  1514. /*
  1515. * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
  1516. */
  1517. int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
  1518. {
  1519. int ret;
  1520. mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
  1521. if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
  1522. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1523. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
  1524. mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
  1525. mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
  1526. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
  1527. if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
  1528. {
  1529. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1530. goto cleanup;
  1531. }
  1532. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
  1533. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
  1534. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
  1535. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
  1536. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
  1537. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
  1538. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
  1539. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
  1540. do
  1541. {
  1542. while( ( TU.p[0] & 1 ) == 0 )
  1543. {
  1544. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
  1545. if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
  1546. {
  1547. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
  1548. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
  1549. }
  1550. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
  1551. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
  1552. }
  1553. while( ( TV.p[0] & 1 ) == 0 )
  1554. {
  1555. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
  1556. if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
  1557. {
  1558. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
  1559. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
  1560. }
  1561. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
  1562. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
  1563. }
  1564. if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
  1565. {
  1566. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
  1567. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
  1568. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
  1569. }
  1570. else
  1571. {
  1572. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
  1573. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
  1574. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
  1575. }
  1576. }
  1577. while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
  1578. while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
  1579. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
  1580. while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
  1581. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
  1582. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
  1583. cleanup:
  1584. mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
  1585. mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
  1586. mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
  1587. return( ret );
  1588. }
  1589. #if defined(MBEDTLS_GENPRIME)
  1590. static const int small_prime[] =
  1591. {
  1592. 3, 5, 7, 11, 13, 17, 19, 23,
  1593. 29, 31, 37, 41, 43, 47, 53, 59,
  1594. 61, 67, 71, 73, 79, 83, 89, 97,
  1595. 101, 103, 107, 109, 113, 127, 131, 137,
  1596. 139, 149, 151, 157, 163, 167, 173, 179,
  1597. 181, 191, 193, 197, 199, 211, 223, 227,
  1598. 229, 233, 239, 241, 251, 257, 263, 269,
  1599. 271, 277, 281, 283, 293, 307, 311, 313,
  1600. 317, 331, 337, 347, 349, 353, 359, 367,
  1601. 373, 379, 383, 389, 397, 401, 409, 419,
  1602. 421, 431, 433, 439, 443, 449, 457, 461,
  1603. 463, 467, 479, 487, 491, 499, 503, 509,
  1604. 521, 523, 541, 547, 557, 563, 569, 571,
  1605. 577, 587, 593, 599, 601, 607, 613, 617,
  1606. 619, 631, 641, 643, 647, 653, 659, 661,
  1607. 673, 677, 683, 691, 701, 709, 719, 727,
  1608. 733, 739, 743, 751, 757, 761, 769, 773,
  1609. 787, 797, 809, 811, 821, 823, 827, 829,
  1610. 839, 853, 857, 859, 863, 877, 881, 883,
  1611. 887, 907, 911, 919, 929, 937, 941, 947,
  1612. 953, 967, 971, 977, 983, 991, 997, -103
  1613. };
  1614. /*
  1615. * Small divisors test (X must be positive)
  1616. *
  1617. * Return values:
  1618. * 0: no small factor (possible prime, more tests needed)
  1619. * 1: certain prime
  1620. * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
  1621. * other negative: error
  1622. */
  1623. static int mpi_check_small_factors( const mbedtls_mpi *X )
  1624. {
  1625. int ret = 0;
  1626. size_t i;
  1627. mbedtls_mpi_uint r;
  1628. if( ( X->p[0] & 1 ) == 0 )
  1629. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1630. for( i = 0; small_prime[i] > 0; i++ )
  1631. {
  1632. if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
  1633. return( 1 );
  1634. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
  1635. if( r == 0 )
  1636. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1637. }
  1638. cleanup:
  1639. return( ret );
  1640. }
  1641. /*
  1642. * Miller-Rabin pseudo-primality test (HAC 4.24)
  1643. */
  1644. static int mpi_miller_rabin( const mbedtls_mpi *X,
  1645. int (*f_rng)(void *, unsigned char *, size_t),
  1646. void *p_rng )
  1647. {
  1648. int ret, count;
  1649. size_t i, j, k, n, s;
  1650. mbedtls_mpi W, R, T, A, RR;
  1651. mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
  1652. mbedtls_mpi_init( &RR );
  1653. /*
  1654. * W = |X| - 1
  1655. * R = W >> lsb( W )
  1656. */
  1657. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
  1658. s = mbedtls_mpi_lsb( &W );
  1659. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
  1660. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
  1661. i = mbedtls_mpi_bitlen( X );
  1662. /*
  1663. * HAC, table 4.4
  1664. */
  1665. n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
  1666. ( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
  1667. ( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
  1668. for( i = 0; i < n; i++ )
  1669. {
  1670. /*
  1671. * pick a random A, 1 < A < |X| - 1
  1672. */
  1673. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1674. if( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 )
  1675. {
  1676. j = mbedtls_mpi_bitlen( &A ) - mbedtls_mpi_bitlen( &W );
  1677. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j + 1 ) );
  1678. }
  1679. A.p[0] |= 3;
  1680. count = 0;
  1681. do {
  1682. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1683. j = mbedtls_mpi_bitlen( &A );
  1684. k = mbedtls_mpi_bitlen( &W );
  1685. if (j > k) {
  1686. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j - k ) );
  1687. }
  1688. if (count++ > 30) {
  1689. return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1690. }
  1691. } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
  1692. mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
  1693. /*
  1694. * A = A^R mod |X|
  1695. */
  1696. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
  1697. if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
  1698. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1699. continue;
  1700. j = 1;
  1701. while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
  1702. {
  1703. /*
  1704. * A = A * A mod |X|
  1705. */
  1706. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
  1707. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
  1708. if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1709. break;
  1710. j++;
  1711. }
  1712. /*
  1713. * not prime if A != |X| - 1 or A == 1
  1714. */
  1715. if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
  1716. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1717. {
  1718. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1719. break;
  1720. }
  1721. }
  1722. cleanup:
  1723. mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
  1724. mbedtls_mpi_free( &RR );
  1725. return( ret );
  1726. }
  1727. /*
  1728. * Pseudo-primality test: small factors, then Miller-Rabin
  1729. */
  1730. int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
  1731. int (*f_rng)(void *, unsigned char *, size_t),
  1732. void *p_rng )
  1733. {
  1734. int ret;
  1735. mbedtls_mpi XX;
  1736. XX.s = 1;
  1737. XX.n = X->n;
  1738. XX.p = X->p;
  1739. if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
  1740. mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
  1741. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1742. if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
  1743. return( 0 );
  1744. if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
  1745. {
  1746. if( ret == 1 )
  1747. return( 0 );
  1748. return( ret );
  1749. }
  1750. return( mpi_miller_rabin( &XX, f_rng, p_rng ) );
  1751. }
  1752. /*
  1753. * Prime number generation
  1754. *
  1755. * If dh_flag is 0 and nbits is at least 1024, then the procedure
  1756. * follows the RSA probably-prime generation method of FIPS 186-4.
  1757. * NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536.
  1758. */
  1759. int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
  1760. int (*f_rng)(void *, unsigned char *, size_t),
  1761. void *p_rng )
  1762. {
  1763. #ifdef MBEDTLS_HAVE_INT64
  1764. // ceil(2^63.5)
  1765. #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
  1766. #else
  1767. // ceil(2^31.5)
  1768. #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
  1769. #endif
  1770. int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1771. size_t k, n;
  1772. mbedtls_mpi_uint r;
  1773. mbedtls_mpi Y;
  1774. if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
  1775. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1776. mbedtls_mpi_init( &Y );
  1777. n = BITS_TO_LIMBS( nbits );
  1778. while( 1 )
  1779. {
  1780. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
  1781. /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
  1782. if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
  1783. k = n * biL;
  1784. if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
  1785. X->p[0] |= 1;
  1786. if( dh_flag == 0 )
  1787. {
  1788. ret = mbedtls_mpi_is_prime( X, f_rng, p_rng );
  1789. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1790. goto cleanup;
  1791. }
  1792. else
  1793. {
  1794. /*
  1795. * An necessary condition for Y and X = 2Y + 1 to be prime
  1796. * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
  1797. * Make sure it is satisfied, while keeping X = 3 mod 4
  1798. */
  1799. X->p[0] |= 2;
  1800. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
  1801. if( r == 0 )
  1802. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
  1803. else if( r == 1 )
  1804. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
  1805. /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
  1806. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
  1807. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
  1808. while( 1 )
  1809. {
  1810. /*
  1811. * First, check small factors for X and Y
  1812. * before doing Miller-Rabin on any of them
  1813. */
  1814. if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
  1815. ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
  1816. ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
  1817. ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
  1818. goto cleanup;
  1819. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1820. goto cleanup;
  1821. /*
  1822. * Next candidates. We want to preserve Y = (X-1) / 2 and
  1823. * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
  1824. * so up Y by 6 and X by 12.
  1825. */
  1826. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
  1827. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
  1828. }
  1829. }
  1830. }
  1831. cleanup:
  1832. mbedtls_mpi_free( &Y );
  1833. return( ret );
  1834. }
  1835. #endif /* MBEDTLS_GENPRIME */
  1836. #if defined(MBEDTLS_SELF_TEST)
  1837. #define GCD_PAIR_COUNT 3
  1838. static const int gcd_pairs[GCD_PAIR_COUNT][3] =
  1839. {
  1840. { 693, 609, 21 },
  1841. { 1764, 868, 28 },
  1842. { 768454923, 542167814, 1 }
  1843. };
  1844. /*
  1845. * Checkup routine
  1846. */
  1847. int mbedtls_mpi_self_test( int verbose )
  1848. {
  1849. int ret, i;
  1850. mbedtls_mpi A, E, N, X, Y, U, V;
  1851. mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
  1852. mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
  1853. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
  1854. "EFE021C2645FD1DC586E69184AF4A31E" \
  1855. "D5F53E93B5F123FA41680867BA110131" \
  1856. "944FE7952E2517337780CB0DB80E61AA" \
  1857. "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
  1858. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
  1859. "B2E7EFD37075B9F03FF989C7C5051C20" \
  1860. "34D2A323810251127E7BF8625A4F49A5" \
  1861. "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
  1862. "5B5C25763222FEFCCFC38B832366C29E" ) );
  1863. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
  1864. "0066A198186C18C10B2F5ED9B522752A" \
  1865. "9830B69916E535C8F047518A889A43A5" \
  1866. "94B6BED27A168D31D4A52F88925AA8F5" ) );
  1867. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
  1868. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1869. "602AB7ECA597A3D6B56FF9829A5E8B85" \
  1870. "9E857EA95A03512E2BAE7391688D264A" \
  1871. "A5663B0341DB9CCFD2C4C5F421FEC814" \
  1872. "8001B72E848A38CAE1C65F78E56ABDEF" \
  1873. "E12D3C039B8A02D6BE593F0BBBDA56F1" \
  1874. "ECF677152EF804370C1A305CAF3B5BF1" \
  1875. "30879B56C61DE584A0F53A2447A51E" ) );
  1876. if( verbose != 0 )
  1877. mbedtls_printf( " MPI test #1 (mul_mpi): " );
  1878. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1879. {
  1880. if( verbose != 0 )
  1881. mbedtls_printf( "failed\n" );
  1882. ret = 1;
  1883. goto cleanup;
  1884. }
  1885. if( verbose != 0 )
  1886. mbedtls_printf( "passed\n" );
  1887. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
  1888. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1889. "256567336059E52CAE22925474705F39A94" ) );
  1890. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
  1891. "6613F26162223DF488E9CD48CC132C7A" \
  1892. "0AC93C701B001B092E4E5B9F73BCD27B" \
  1893. "9EE50D0657C77F374E903CDFA4C642" ) );
  1894. if( verbose != 0 )
  1895. mbedtls_printf( " MPI test #2 (div_mpi): " );
  1896. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
  1897. mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
  1898. {
  1899. if( verbose != 0 )
  1900. mbedtls_printf( "failed\n" );
  1901. ret = 1;
  1902. goto cleanup;
  1903. }
  1904. if( verbose != 0 )
  1905. mbedtls_printf( "passed\n" );
  1906. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
  1907. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1908. "36E139AEA55215609D2816998ED020BB" \
  1909. "BD96C37890F65171D948E9BC7CBAA4D9" \
  1910. "325D24D6A3C12710F10A09FA08AB87" ) );
  1911. if( verbose != 0 )
  1912. mbedtls_printf( " MPI test #3 (exp_mod): " );
  1913. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1914. {
  1915. if( verbose != 0 )
  1916. mbedtls_printf( "failed\n" );
  1917. ret = 1;
  1918. goto cleanup;
  1919. }
  1920. if( verbose != 0 )
  1921. mbedtls_printf( "passed\n" );
  1922. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
  1923. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1924. "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
  1925. "C3DBA76456363A10869622EAC2DD84EC" \
  1926. "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
  1927. if( verbose != 0 )
  1928. mbedtls_printf( " MPI test #4 (inv_mod): " );
  1929. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1930. {
  1931. if( verbose != 0 )
  1932. mbedtls_printf( "failed\n" );
  1933. ret = 1;
  1934. goto cleanup;
  1935. }
  1936. if( verbose != 0 )
  1937. mbedtls_printf( "passed\n" );
  1938. if( verbose != 0 )
  1939. mbedtls_printf( " MPI test #5 (simple gcd): " );
  1940. for( i = 0; i < GCD_PAIR_COUNT; i++ )
  1941. {
  1942. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
  1943. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
  1944. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
  1945. if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
  1946. {
  1947. if( verbose != 0 )
  1948. mbedtls_printf( "failed at %d\n", i );
  1949. ret = 1;
  1950. goto cleanup;
  1951. }
  1952. }
  1953. if( verbose != 0 )
  1954. mbedtls_printf( "passed\n" );
  1955. cleanup:
  1956. if( ret != 0 && verbose != 0 )
  1957. mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
  1958. mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
  1959. mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
  1960. if( verbose != 0 )
  1961. mbedtls_printf( "\n" );
  1962. return( ret );
  1963. }
  1964. #endif /* MBEDTLS_SELF_TEST */
  1965. #endif /* MBEDTLS_BIGNUM_C */