123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Transform" category="Built-In Types" version="3.1">
- <brief_description>
- 3D Transformation. 3x4 matrix.
- </brief_description>
- <description>
- Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a [Basis] "basis" and an [Vector3] "origin". It is similar to a 3x4 matrix.
- </description>
- <tutorials>
- <link>https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
- <link>https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
- </tutorials>
- <demos>
- </demos>
- <methods>
- <method name="Transform">
- <return type="Transform">
- </return>
- <argument index="0" name="x_axis" type="Vector3">
- </argument>
- <argument index="1" name="y_axis" type="Vector3">
- </argument>
- <argument index="2" name="z_axis" type="Vector3">
- </argument>
- <argument index="3" name="origin" type="Vector3">
- </argument>
- <description>
- Constructs the Transform from four [Vector3]. Each axis corresponds to local basis vectors (some of which may be scaled).
- </description>
- </method>
- <method name="Transform">
- <return type="Transform">
- </return>
- <argument index="0" name="basis" type="Basis">
- </argument>
- <argument index="1" name="origin" type="Vector3">
- </argument>
- <description>
- Constructs the Transform from a [Basis] and [Vector3].
- </description>
- </method>
- <method name="Transform">
- <return type="Transform">
- </return>
- <argument index="0" name="from" type="Transform2D">
- </argument>
- <description>
- Constructs the Transform from a [Transform2D].
- </description>
- </method>
- <method name="Transform">
- <return type="Transform">
- </return>
- <argument index="0" name="from" type="Quat">
- </argument>
- <description>
- Constructs the Transform from a [Quat]. The origin will be Vector3(0, 0, 0).
- </description>
- </method>
- <method name="Transform">
- <return type="Transform">
- </return>
- <argument index="0" name="from" type="Basis">
- </argument>
- <description>
- Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
- </description>
- </method>
- <method name="affine_inverse">
- <return type="Transform">
- </return>
- <description>
- Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
- </description>
- </method>
- <method name="interpolate_with">
- <return type="Transform">
- </return>
- <argument index="0" name="transform" type="Transform">
- </argument>
- <argument index="1" name="weight" type="float">
- </argument>
- <description>
- Interpolates the transform to other Transform by weight amount (0-1).
- </description>
- </method>
- <method name="inverse">
- <return type="Transform">
- </return>
- <description>
- Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
- </description>
- </method>
- <method name="looking_at">
- <return type="Transform">
- </return>
- <argument index="0" name="target" type="Vector3">
- </argument>
- <argument index="1" name="up" type="Vector3">
- </argument>
- <description>
- Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
- The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
- Operations take place in global space.
- </description>
- </method>
- <method name="orthonormalized">
- <return type="Transform">
- </return>
- <description>
- Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
- </description>
- </method>
- <method name="rotated">
- <return type="Transform">
- </return>
- <argument index="0" name="axis" type="Vector3">
- </argument>
- <argument index="1" name="phi" type="float">
- </argument>
- <description>
- Rotates the transform around given axis by phi. The axis must be a normalized vector.
- </description>
- </method>
- <method name="scaled">
- <return type="Transform">
- </return>
- <argument index="0" name="scale" type="Vector3">
- </argument>
- <description>
- Scales the transform by the specified 3D scaling factors.
- </description>
- </method>
- <method name="translated">
- <return type="Transform">
- </return>
- <argument index="0" name="ofs" type="Vector3">
- </argument>
- <description>
- Translates the transform by the specified offset.
- </description>
- </method>
- <method name="xform">
- <return type="Variant">
- </return>
- <argument index="0" name="v" type="Variant">
- </argument>
- <description>
- Transforms the given [Vector3], [Plane], or [AABB] by this transform.
- </description>
- </method>
- <method name="xform_inv">
- <return type="Variant">
- </return>
- <argument index="0" name="v" type="Variant">
- </argument>
- <description>
- Inverse-transforms the given [Vector3], [Plane], or [AABB] by this transform.
- </description>
- </method>
- </methods>
- <members>
- <member name="basis" type="Basis" setter="" getter="">
- The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
- </member>
- <member name="origin" type="Vector3" setter="" getter="">
- The translation offset of the transform.
- </member>
- </members>
- <constants>
- <constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
- </constant>
- <constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
- </constant>
- <constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
- </constant>
- <constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
- </constant>
- </constants>
- </class>
|