pool_allocator.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /*************************************************************************/
  2. /* pool_allocator.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "pool_allocator.h"
  31. #include "core/error_macros.h"
  32. #include "core/os/copymem.h"
  33. #include "core/os/memory.h"
  34. #include "core/os/os.h"
  35. #include "core/print_string.h"
  36. #include <assert.h>
  37. #define COMPACT_CHUNK(m_entry, m_to_pos) \
  38. do { \
  39. void *_dst = &((unsigned char *)pool)[m_to_pos]; \
  40. void *_src = &((unsigned char *)pool)[(m_entry).pos]; \
  41. movemem(_dst, _src, aligned((m_entry).len)); \
  42. (m_entry).pos = m_to_pos; \
  43. } while (0);
  44. void PoolAllocator::mt_lock() const {
  45. }
  46. void PoolAllocator::mt_unlock() const {
  47. }
  48. bool PoolAllocator::get_free_entry(EntryArrayPos *p_pos) {
  49. if (entry_count == entry_max)
  50. return false;
  51. for (int i = 0; i < entry_max; i++) {
  52. if (entry_array[i].len == 0) {
  53. *p_pos = i;
  54. return true;
  55. }
  56. }
  57. ERR_PRINT("Out of memory Chunks!");
  58. return false; //
  59. }
  60. /**
  61. * Find a hole
  62. * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end
  63. * @param p_for_size hole size
  64. * @return false if hole found, true if no hole found
  65. */
  66. bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) {
  67. /* position where previous entry ends. Defaults to zero (begin of pool) */
  68. int prev_entry_end_pos = 0;
  69. for (int i = 0; i < entry_count; i++) {
  70. Entry &entry = entry_array[entry_indices[i]];
  71. /* determine hole size to previous entry */
  72. int hole_size = entry.pos - prev_entry_end_pos;
  73. /* determine if what we want fits in that hole */
  74. if (hole_size >= p_for_size) {
  75. *p_pos = i;
  76. return true;
  77. }
  78. /* prepare for next one */
  79. prev_entry_end_pos = entry_end(entry);
  80. }
  81. /* No holes between entries, check at the end..*/
  82. if ((pool_size - prev_entry_end_pos) >= p_for_size) {
  83. *p_pos = entry_count;
  84. return true;
  85. }
  86. return false;
  87. }
  88. void PoolAllocator::compact(int p_up_to) {
  89. uint32_t prev_entry_end_pos = 0;
  90. if (p_up_to < 0)
  91. p_up_to = entry_count;
  92. for (int i = 0; i < p_up_to; i++) {
  93. Entry &entry = entry_array[entry_indices[i]];
  94. /* determine hole size to previous entry */
  95. int hole_size = entry.pos - prev_entry_end_pos;
  96. /* if we can compact, do it */
  97. if (hole_size > 0 && !entry.lock) {
  98. COMPACT_CHUNK(entry, prev_entry_end_pos);
  99. }
  100. /* prepare for next one */
  101. prev_entry_end_pos = entry_end(entry);
  102. }
  103. }
  104. void PoolAllocator::compact_up(int p_from) {
  105. uint32_t next_entry_end_pos = pool_size; // - static_area_size;
  106. for (int i = entry_count - 1; i >= p_from; i--) {
  107. Entry &entry = entry_array[entry_indices[i]];
  108. /* determine hole size to nextious entry */
  109. int hole_size = next_entry_end_pos - (entry.pos + aligned(entry.len));
  110. /* if we can compact, do it */
  111. if (hole_size > 0 && !entry.lock) {
  112. COMPACT_CHUNK(entry, (next_entry_end_pos - aligned(entry.len)));
  113. }
  114. /* prepare for next one */
  115. next_entry_end_pos = entry.pos;
  116. }
  117. }
  118. bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos, Entry *p_entry) {
  119. EntryArrayPos entry_pos = entry_max;
  120. for (int i = 0; i < entry_count; i++) {
  121. if (&entry_array[entry_indices[i]] == p_entry) {
  122. entry_pos = i;
  123. break;
  124. }
  125. }
  126. if (entry_pos == entry_max)
  127. return false;
  128. *p_map_pos = entry_pos;
  129. return true;
  130. }
  131. PoolAllocator::ID PoolAllocator::alloc(int p_size) {
  132. ERR_FAIL_COND_V(p_size < 1, POOL_ALLOCATOR_INVALID_ID);
  133. #ifdef DEBUG_ENABLED
  134. if (p_size > free_mem) OS::get_singleton()->debug_break();
  135. #endif
  136. ERR_FAIL_COND_V(p_size > free_mem, POOL_ALLOCATOR_INVALID_ID);
  137. mt_lock();
  138. if (entry_count == entry_max) {
  139. mt_unlock();
  140. ERR_PRINT("entry_count==entry_max");
  141. return POOL_ALLOCATOR_INVALID_ID;
  142. }
  143. int size_to_alloc = aligned(p_size);
  144. EntryIndicesPos new_entry_indices_pos;
  145. if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
  146. /* No hole could be found, try compacting mem */
  147. compact();
  148. /* Then search again */
  149. if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
  150. mt_unlock();
  151. ERR_PRINT("memory can't be compacted further");
  152. return POOL_ALLOCATOR_INVALID_ID;
  153. }
  154. }
  155. EntryArrayPos new_entry_array_pos;
  156. bool found_free_entry = get_free_entry(&new_entry_array_pos);
  157. if (!found_free_entry) {
  158. mt_unlock();
  159. ERR_FAIL_COND_V(!found_free_entry, POOL_ALLOCATOR_INVALID_ID);
  160. }
  161. /* move all entry indices up, make room for this one */
  162. for (int i = entry_count; i > new_entry_indices_pos; i--) {
  163. entry_indices[i] = entry_indices[i - 1];
  164. }
  165. entry_indices[new_entry_indices_pos] = new_entry_array_pos;
  166. entry_count++;
  167. Entry &entry = entry_array[entry_indices[new_entry_indices_pos]];
  168. entry.len = p_size;
  169. entry.pos = (new_entry_indices_pos == 0) ? 0 : entry_end(entry_array[entry_indices[new_entry_indices_pos - 1]]); //alloc either at beginning or end of previous
  170. entry.lock = 0;
  171. entry.check = (check_count++) & CHECK_MASK;
  172. free_mem -= size_to_alloc;
  173. if (free_mem < free_mem_peak)
  174. free_mem_peak = free_mem;
  175. ID retval = (entry_indices[new_entry_indices_pos] << CHECK_BITS) | entry.check;
  176. mt_unlock();
  177. //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval );
  178. return retval;
  179. }
  180. PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) {
  181. unsigned int check = p_mem & CHECK_MASK;
  182. int entry = p_mem >> CHECK_BITS;
  183. ERR_FAIL_INDEX_V(entry, entry_max, NULL);
  184. ERR_FAIL_COND_V(entry_array[entry].check != check, NULL);
  185. ERR_FAIL_COND_V(entry_array[entry].len == 0, NULL);
  186. return &entry_array[entry];
  187. }
  188. const PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) const {
  189. unsigned int check = p_mem & CHECK_MASK;
  190. int entry = p_mem >> CHECK_BITS;
  191. ERR_FAIL_INDEX_V(entry, entry_max, NULL);
  192. ERR_FAIL_COND_V(entry_array[entry].check != check, NULL);
  193. ERR_FAIL_COND_V(entry_array[entry].len == 0, NULL);
  194. return &entry_array[entry];
  195. }
  196. void PoolAllocator::free(ID p_mem) {
  197. mt_lock();
  198. Entry *e = get_entry(p_mem);
  199. if (!e) {
  200. mt_unlock();
  201. ERR_PRINT("!e");
  202. return;
  203. }
  204. if (e->lock) {
  205. mt_unlock();
  206. ERR_PRINT("e->lock");
  207. return;
  208. }
  209. EntryIndicesPos entry_indices_pos;
  210. bool index_found = find_entry_index(&entry_indices_pos, e);
  211. if (!index_found) {
  212. mt_unlock();
  213. ERR_FAIL_COND(!index_found);
  214. }
  215. for (int i = entry_indices_pos; i < (entry_count - 1); i++) {
  216. entry_indices[i] = entry_indices[i + 1];
  217. }
  218. entry_count--;
  219. free_mem += aligned(e->len);
  220. e->clear();
  221. mt_unlock();
  222. }
  223. int PoolAllocator::get_size(ID p_mem) const {
  224. int size;
  225. mt_lock();
  226. const Entry *e = get_entry(p_mem);
  227. if (!e) {
  228. mt_unlock();
  229. ERR_PRINT("!e");
  230. return 0;
  231. }
  232. size = e->len;
  233. mt_unlock();
  234. return size;
  235. }
  236. Error PoolAllocator::resize(ID p_mem, int p_new_size) {
  237. mt_lock();
  238. Entry *e = get_entry(p_mem);
  239. if (!e) {
  240. mt_unlock();
  241. ERR_FAIL_COND_V(!e, ERR_INVALID_PARAMETER);
  242. }
  243. if (needs_locking && e->lock) {
  244. mt_unlock();
  245. ERR_FAIL_COND_V(e->lock, ERR_ALREADY_IN_USE);
  246. }
  247. uint32_t alloc_size = aligned(p_new_size);
  248. if ((uint32_t)aligned(e->len) == alloc_size) {
  249. e->len = p_new_size;
  250. mt_unlock();
  251. return OK;
  252. } else if (e->len > (uint32_t)p_new_size) {
  253. free_mem += aligned(e->len);
  254. free_mem -= alloc_size;
  255. e->len = p_new_size;
  256. mt_unlock();
  257. return OK;
  258. }
  259. //p_new_size = align(p_new_size)
  260. int _free = free_mem; // - static_area_size;
  261. if (uint32_t(_free + aligned(e->len)) < alloc_size) {
  262. mt_unlock();
  263. ERR_FAIL_V(ERR_OUT_OF_MEMORY);
  264. };
  265. EntryIndicesPos entry_indices_pos;
  266. bool index_found = find_entry_index(&entry_indices_pos, e);
  267. if (!index_found) {
  268. mt_unlock();
  269. ERR_FAIL_COND_V(!index_found, ERR_BUG);
  270. }
  271. //no need to move stuff around, it fits before the next block
  272. uint32_t next_pos;
  273. if (entry_indices_pos + 1 == entry_count) {
  274. next_pos = pool_size; // - static_area_size;
  275. } else {
  276. next_pos = entry_array[entry_indices[entry_indices_pos + 1]].pos;
  277. };
  278. if ((next_pos - e->pos) > alloc_size) {
  279. free_mem += aligned(e->len);
  280. e->len = p_new_size;
  281. free_mem -= alloc_size;
  282. mt_unlock();
  283. return OK;
  284. }
  285. //it doesn't fit, compact around BEFORE current index (make room behind)
  286. compact(entry_indices_pos + 1);
  287. if ((next_pos - e->pos) > alloc_size) {
  288. //now fits! hooray!
  289. free_mem += aligned(e->len);
  290. e->len = p_new_size;
  291. free_mem -= alloc_size;
  292. mt_unlock();
  293. if (free_mem < free_mem_peak)
  294. free_mem_peak = free_mem;
  295. return OK;
  296. }
  297. //STILL doesn't fit, compact around AFTER current index (make room after)
  298. compact_up(entry_indices_pos + 1);
  299. if ((entry_array[entry_indices[entry_indices_pos + 1]].pos - e->pos) > alloc_size) {
  300. //now fits! hooray!
  301. free_mem += aligned(e->len);
  302. e->len = p_new_size;
  303. free_mem -= alloc_size;
  304. mt_unlock();
  305. if (free_mem < free_mem_peak)
  306. free_mem_peak = free_mem;
  307. return OK;
  308. }
  309. mt_unlock();
  310. ERR_FAIL_V(ERR_OUT_OF_MEMORY);
  311. }
  312. Error PoolAllocator::lock(ID p_mem) {
  313. if (!needs_locking)
  314. return OK;
  315. mt_lock();
  316. Entry *e = get_entry(p_mem);
  317. if (!e) {
  318. mt_unlock();
  319. ERR_PRINT("!e");
  320. return ERR_INVALID_PARAMETER;
  321. }
  322. e->lock++;
  323. mt_unlock();
  324. return OK;
  325. }
  326. bool PoolAllocator::is_locked(ID p_mem) const {
  327. if (!needs_locking)
  328. return false;
  329. mt_lock();
  330. const Entry *e = ((PoolAllocator *)(this))->get_entry(p_mem);
  331. if (!e) {
  332. mt_unlock();
  333. ERR_PRINT("!e");
  334. return false;
  335. }
  336. bool locked = e->lock;
  337. mt_unlock();
  338. return locked;
  339. }
  340. const void *PoolAllocator::get(ID p_mem) const {
  341. if (!needs_locking) {
  342. const Entry *e = get_entry(p_mem);
  343. ERR_FAIL_COND_V(!e, NULL);
  344. return &pool[e->pos];
  345. }
  346. mt_lock();
  347. const Entry *e = get_entry(p_mem);
  348. if (!e) {
  349. mt_unlock();
  350. ERR_FAIL_COND_V(!e, NULL);
  351. }
  352. if (e->lock == 0) {
  353. mt_unlock();
  354. ERR_PRINT("e->lock == 0");
  355. return NULL;
  356. }
  357. if ((int)e->pos >= pool_size) {
  358. mt_unlock();
  359. ERR_PRINT("e->pos<0 || e->pos>=pool_size");
  360. return NULL;
  361. }
  362. const void *ptr = &pool[e->pos];
  363. mt_unlock();
  364. return ptr;
  365. }
  366. void *PoolAllocator::get(ID p_mem) {
  367. if (!needs_locking) {
  368. Entry *e = get_entry(p_mem);
  369. if (!e) {
  370. ERR_FAIL_COND_V(!e, NULL);
  371. };
  372. return &pool[e->pos];
  373. }
  374. mt_lock();
  375. Entry *e = get_entry(p_mem);
  376. if (!e) {
  377. mt_unlock();
  378. ERR_FAIL_COND_V(!e, NULL);
  379. }
  380. if (e->lock == 0) {
  381. //assert(0);
  382. mt_unlock();
  383. ERR_PRINT("e->lock == 0");
  384. return NULL;
  385. }
  386. if ((int)e->pos >= pool_size) {
  387. mt_unlock();
  388. ERR_PRINT("e->pos<0 || e->pos>=pool_size");
  389. return NULL;
  390. }
  391. void *ptr = &pool[e->pos];
  392. mt_unlock();
  393. return ptr;
  394. }
  395. void PoolAllocator::unlock(ID p_mem) {
  396. if (!needs_locking)
  397. return;
  398. mt_lock();
  399. Entry *e = get_entry(p_mem);
  400. if (e->lock == 0) {
  401. mt_unlock();
  402. ERR_PRINT("e->lock == 0");
  403. return;
  404. }
  405. e->lock--;
  406. mt_unlock();
  407. }
  408. int PoolAllocator::get_used_mem() const {
  409. return pool_size - free_mem;
  410. }
  411. int PoolAllocator::get_free_peak() {
  412. return free_mem_peak;
  413. }
  414. int PoolAllocator::get_free_mem() {
  415. return free_mem;
  416. }
  417. void PoolAllocator::create_pool(void *p_mem, int p_size, int p_max_entries) {
  418. pool = (uint8_t *)p_mem;
  419. pool_size = p_size;
  420. entry_array = memnew_arr(Entry, p_max_entries);
  421. entry_indices = memnew_arr(int, p_max_entries);
  422. entry_max = p_max_entries;
  423. entry_count = 0;
  424. free_mem = p_size;
  425. free_mem_peak = p_size;
  426. check_count = 0;
  427. }
  428. PoolAllocator::PoolAllocator(int p_size, bool p_needs_locking, int p_max_entries) {
  429. mem_ptr = memalloc(p_size);
  430. ERR_FAIL_COND(!mem_ptr);
  431. align = 1;
  432. create_pool(mem_ptr, p_size, p_max_entries);
  433. needs_locking = p_needs_locking;
  434. }
  435. PoolAllocator::PoolAllocator(void *p_mem, int p_size, int p_align, bool p_needs_locking, int p_max_entries) {
  436. if (p_align > 1) {
  437. uint8_t *mem8 = (uint8_t *)p_mem;
  438. uint64_t ofs = (uint64_t)mem8;
  439. if (ofs % p_align) {
  440. int dif = p_align - (ofs % p_align);
  441. mem8 += p_align - (ofs % p_align);
  442. p_size -= dif;
  443. p_mem = (void *)mem8;
  444. };
  445. };
  446. create_pool(p_mem, p_size, p_max_entries);
  447. needs_locking = p_needs_locking;
  448. align = p_align;
  449. mem_ptr = NULL;
  450. }
  451. PoolAllocator::PoolAllocator(int p_align, int p_size, bool p_needs_locking, int p_max_entries) {
  452. ERR_FAIL_COND(p_align < 1);
  453. mem_ptr = Memory::alloc_static(p_size + p_align, "PoolAllocator()");
  454. uint8_t *mem8 = (uint8_t *)mem_ptr;
  455. uint64_t ofs = (uint64_t)mem8;
  456. if (ofs % p_align)
  457. mem8 += p_align - (ofs % p_align);
  458. create_pool(mem8, p_size, p_max_entries);
  459. needs_locking = p_needs_locking;
  460. align = p_align;
  461. }
  462. PoolAllocator::~PoolAllocator() {
  463. if (mem_ptr)
  464. memfree(mem_ptr);
  465. memdelete_arr(entry_array);
  466. memdelete_arr(entry_indices);
  467. }