12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553 |
- //
- // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
- //
- // This software is provided 'as-is', without any express or implied
- // warranty. In no event will the authors be held liable for any damages
- // arising from the use of this software.
- // Permission is granted to anyone to use this software for any purpose,
- // including commercial applications, and to alter it and redistribute it
- // freely, subject to the following restrictions:
- // 1. The origin of this software must not be misrepresented; you must not
- // claim that you wrote the original software. If you use this software
- // in a product, an acknowledgment in the product documentation would be
- // appreciated but is not required.
- // 2. Altered source versions must be plainly marked as such, and must not be
- // misrepresented as being the original software.
- // 3. This notice may not be removed or altered from any source distribution.
- //
- #define _USE_MATH_DEFINES
- #include <math.h>
- #include <string.h>
- #include <stdio.h>
- #include "Recast.h"
- #include "RecastAlloc.h"
- #include "RecastAssert.h"
- struct rcEdge
- {
- unsigned short vert[2];
- unsigned short polyEdge[2];
- unsigned short poly[2];
- };
- static bool buildMeshAdjacency(unsigned short* polys, const int npolys,
- const int nverts, const int vertsPerPoly)
- {
- // Based on code by Eric Lengyel from:
- // http://www.terathon.com/code/edges.php
-
- int maxEdgeCount = npolys*vertsPerPoly;
- unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP);
- if (!firstEdge)
- return false;
- unsigned short* nextEdge = firstEdge + nverts;
- int edgeCount = 0;
-
- rcEdge* edges = (rcEdge*)rcAlloc(sizeof(rcEdge)*maxEdgeCount, RC_ALLOC_TEMP);
- if (!edges)
- {
- rcFree(firstEdge);
- return false;
- }
-
- for (int i = 0; i < nverts; i++)
- firstEdge[i] = RC_MESH_NULL_IDX;
-
- for (int i = 0; i < npolys; ++i)
- {
- unsigned short* t = &polys[i*vertsPerPoly*2];
- for (int j = 0; j < vertsPerPoly; ++j)
- {
- if (t[j] == RC_MESH_NULL_IDX) break;
- unsigned short v0 = t[j];
- unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
- if (v0 < v1)
- {
- rcEdge& edge = edges[edgeCount];
- edge.vert[0] = v0;
- edge.vert[1] = v1;
- edge.poly[0] = (unsigned short)i;
- edge.polyEdge[0] = (unsigned short)j;
- edge.poly[1] = (unsigned short)i;
- edge.polyEdge[1] = 0;
- // Insert edge
- nextEdge[edgeCount] = firstEdge[v0];
- firstEdge[v0] = (unsigned short)edgeCount;
- edgeCount++;
- }
- }
- }
-
- for (int i = 0; i < npolys; ++i)
- {
- unsigned short* t = &polys[i*vertsPerPoly*2];
- for (int j = 0; j < vertsPerPoly; ++j)
- {
- if (t[j] == RC_MESH_NULL_IDX) break;
- unsigned short v0 = t[j];
- unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
- if (v0 > v1)
- {
- for (unsigned short e = firstEdge[v1]; e != RC_MESH_NULL_IDX; e = nextEdge[e])
- {
- rcEdge& edge = edges[e];
- if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
- {
- edge.poly[1] = (unsigned short)i;
- edge.polyEdge[1] = (unsigned short)j;
- break;
- }
- }
- }
- }
- }
-
- // Store adjacency
- for (int i = 0; i < edgeCount; ++i)
- {
- const rcEdge& e = edges[i];
- if (e.poly[0] != e.poly[1])
- {
- unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2];
- unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2];
- p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1];
- p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0];
- }
- }
-
- rcFree(firstEdge);
- rcFree(edges);
-
- return true;
- }
- static const int VERTEX_BUCKET_COUNT = (1<<12);
- inline int computeVertexHash(int x, int y, int z)
- {
- const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
- const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
- const unsigned int h3 = 0xcb1ab31f;
- unsigned int n = h1 * x + h2 * y + h3 * z;
- return (int)(n & (VERTEX_BUCKET_COUNT-1));
- }
- static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z,
- unsigned short* verts, int* firstVert, int* nextVert, int& nv)
- {
- int bucket = computeVertexHash(x, 0, z);
- int i = firstVert[bucket];
-
- while (i != -1)
- {
- const unsigned short* v = &verts[i*3];
- if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z)
- return (unsigned short)i;
- i = nextVert[i]; // next
- }
-
- // Could not find, create new.
- i = nv; nv++;
- unsigned short* v = &verts[i*3];
- v[0] = x;
- v[1] = y;
- v[2] = z;
- nextVert[i] = firstVert[bucket];
- firstVert[bucket] = i;
-
- return (unsigned short)i;
- }
- // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
- inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
- inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
- inline int area2(const int* a, const int* b, const int* c)
- {
- return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
- }
- // Exclusive or: true iff exactly one argument is true.
- // The arguments are negated to ensure that they are 0/1
- // values. Then the bitwise Xor operator may apply.
- // (This idea is due to Michael Baldwin.)
- inline bool xorb(bool x, bool y)
- {
- return !x ^ !y;
- }
- // Returns true iff c is strictly to the left of the directed
- // line through a to b.
- inline bool left(const int* a, const int* b, const int* c)
- {
- return area2(a, b, c) < 0;
- }
- inline bool leftOn(const int* a, const int* b, const int* c)
- {
- return area2(a, b, c) <= 0;
- }
- inline bool collinear(const int* a, const int* b, const int* c)
- {
- return area2(a, b, c) == 0;
- }
- // Returns true iff ab properly intersects cd: they share
- // a point interior to both segments. The properness of the
- // intersection is ensured by using strict leftness.
- static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
- {
- // Eliminate improper cases.
- if (collinear(a,b,c) || collinear(a,b,d) ||
- collinear(c,d,a) || collinear(c,d,b))
- return false;
-
- return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
- }
- // Returns T iff (a,b,c) are collinear and point c lies
- // on the closed segement ab.
- static bool between(const int* a, const int* b, const int* c)
- {
- if (!collinear(a, b, c))
- return false;
- // If ab not vertical, check betweenness on x; else on y.
- if (a[0] != b[0])
- return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
- else
- return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
- }
- // Returns true iff segments ab and cd intersect, properly or improperly.
- static bool intersect(const int* a, const int* b, const int* c, const int* d)
- {
- if (intersectProp(a, b, c, d))
- return true;
- else if (between(a, b, c) || between(a, b, d) ||
- between(c, d, a) || between(c, d, b))
- return true;
- else
- return false;
- }
- static bool vequal(const int* a, const int* b)
- {
- return a[0] == b[0] && a[2] == b[2];
- }
- // Returns T iff (v_i, v_j) is a proper internal *or* external
- // diagonal of P, *ignoring edges incident to v_i and v_j*.
- static bool diagonalie(int i, int j, int n, const int* verts, int* indices)
- {
- const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
- const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
-
- // For each edge (k,k+1) of P
- for (int k = 0; k < n; k++)
- {
- int k1 = next(k, n);
- // Skip edges incident to i or j
- if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
- {
- const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
- const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
- if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
- continue;
-
- if (intersect(d0, d1, p0, p1))
- return false;
- }
- }
- return true;
- }
- // Returns true iff the diagonal (i,j) is strictly internal to the
- // polygon P in the neighborhood of the i endpoint.
- static bool inCone(int i, int j, int n, const int* verts, int* indices)
- {
- const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
- const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
- const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
- const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
- // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
- if (leftOn(pin1, pi, pi1))
- return left(pi, pj, pin1) && left(pj, pi, pi1);
- // Assume (i-1,i,i+1) not collinear.
- // else P[i] is reflex.
- return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
- }
- // Returns T iff (v_i, v_j) is a proper internal
- // diagonal of P.
- static bool diagonal(int i, int j, int n, const int* verts, int* indices)
- {
- return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
- }
- static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices)
- {
- const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
- const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
-
- // For each edge (k,k+1) of P
- for (int k = 0; k < n; k++)
- {
- int k1 = next(k, n);
- // Skip edges incident to i or j
- if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
- {
- const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
- const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
-
- if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
- continue;
-
- if (intersectProp(d0, d1, p0, p1))
- return false;
- }
- }
- return true;
- }
- static bool inConeLoose(int i, int j, int n, const int* verts, int* indices)
- {
- const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
- const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
- const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
- const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
-
- // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
- if (leftOn(pin1, pi, pi1))
- return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1);
- // Assume (i-1,i,i+1) not collinear.
- // else P[i] is reflex.
- return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
- }
- static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices)
- {
- return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices);
- }
- static int triangulate(int n, const int* verts, int* indices, int* tris)
- {
- int ntris = 0;
- int* dst = tris;
-
- // The last bit of the index is used to indicate if the vertex can be removed.
- for (int i = 0; i < n; i++)
- {
- int i1 = next(i, n);
- int i2 = next(i1, n);
- if (diagonal(i, i2, n, verts, indices))
- indices[i1] |= 0x80000000;
- }
-
- while (n > 3)
- {
- int minLen = -1;
- int mini = -1;
- for (int i = 0; i < n; i++)
- {
- int i1 = next(i, n);
- if (indices[i1] & 0x80000000)
- {
- const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
- const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4];
-
- int dx = p2[0] - p0[0];
- int dy = p2[2] - p0[2];
- int len = dx*dx + dy*dy;
-
- if (minLen < 0 || len < minLen)
- {
- minLen = len;
- mini = i;
- }
- }
- }
-
- if (mini == -1)
- {
- // We might get here because the contour has overlapping segments, like this:
- //
- // A o-o=====o---o B
- // / |C D| \.
- // o o o o
- // : : : :
- // We'll try to recover by loosing up the inCone test a bit so that a diagonal
- // like A-B or C-D can be found and we can continue.
- minLen = -1;
- mini = -1;
- for (int i = 0; i < n; i++)
- {
- int i1 = next(i, n);
- int i2 = next(i1, n);
- if (diagonalLoose(i, i2, n, verts, indices))
- {
- const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
- const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4];
- int dx = p2[0] - p0[0];
- int dy = p2[2] - p0[2];
- int len = dx*dx + dy*dy;
-
- if (minLen < 0 || len < minLen)
- {
- minLen = len;
- mini = i;
- }
- }
- }
- if (mini == -1)
- {
- // The contour is messed up. This sometimes happens
- // if the contour simplification is too aggressive.
- return -ntris;
- }
- }
-
- int i = mini;
- int i1 = next(i, n);
- int i2 = next(i1, n);
-
- *dst++ = indices[i] & 0x0fffffff;
- *dst++ = indices[i1] & 0x0fffffff;
- *dst++ = indices[i2] & 0x0fffffff;
- ntris++;
-
- // Removes P[i1] by copying P[i+1]...P[n-1] left one index.
- n--;
- for (int k = i1; k < n; k++)
- indices[k] = indices[k+1];
-
- if (i1 >= n) i1 = 0;
- i = prev(i1,n);
- // Update diagonal flags.
- if (diagonal(prev(i, n), i1, n, verts, indices))
- indices[i] |= 0x80000000;
- else
- indices[i] &= 0x0fffffff;
-
- if (diagonal(i, next(i1, n), n, verts, indices))
- indices[i1] |= 0x80000000;
- else
- indices[i1] &= 0x0fffffff;
- }
-
- // Append the remaining triangle.
- *dst++ = indices[0] & 0x0fffffff;
- *dst++ = indices[1] & 0x0fffffff;
- *dst++ = indices[2] & 0x0fffffff;
- ntris++;
-
- return ntris;
- }
- static int countPolyVerts(const unsigned short* p, const int nvp)
- {
- for (int i = 0; i < nvp; ++i)
- if (p[i] == RC_MESH_NULL_IDX)
- return i;
- return nvp;
- }
- inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
- {
- return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
- ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
- }
- static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
- const unsigned short* verts, int& ea, int& eb,
- const int nvp)
- {
- const int na = countPolyVerts(pa, nvp);
- const int nb = countPolyVerts(pb, nvp);
-
- // If the merged polygon would be too big, do not merge.
- if (na+nb-2 > nvp)
- return -1;
-
- // Check if the polygons share an edge.
- ea = -1;
- eb = -1;
-
- for (int i = 0; i < na; ++i)
- {
- unsigned short va0 = pa[i];
- unsigned short va1 = pa[(i+1) % na];
- if (va0 > va1)
- rcSwap(va0, va1);
- for (int j = 0; j < nb; ++j)
- {
- unsigned short vb0 = pb[j];
- unsigned short vb1 = pb[(j+1) % nb];
- if (vb0 > vb1)
- rcSwap(vb0, vb1);
- if (va0 == vb0 && va1 == vb1)
- {
- ea = i;
- eb = j;
- break;
- }
- }
- }
-
- // No common edge, cannot merge.
- if (ea == -1 || eb == -1)
- return -1;
-
- // Check to see if the merged polygon would be convex.
- unsigned short va, vb, vc;
-
- va = pa[(ea+na-1) % na];
- vb = pa[ea];
- vc = pb[(eb+2) % nb];
- if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
- return -1;
-
- va = pb[(eb+nb-1) % nb];
- vb = pb[eb];
- vc = pa[(ea+2) % na];
- if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
- return -1;
-
- va = pa[ea];
- vb = pa[(ea+1)%na];
-
- int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
- int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
-
- return dx*dx + dy*dy;
- }
- static void mergePolyVerts(unsigned short* pa, unsigned short* pb, int ea, int eb,
- unsigned short* tmp, const int nvp)
- {
- const int na = countPolyVerts(pa, nvp);
- const int nb = countPolyVerts(pb, nvp);
-
- // Merge polygons.
- memset(tmp, 0xff, sizeof(unsigned short)*nvp);
- int n = 0;
- // Add pa
- for (int i = 0; i < na-1; ++i)
- tmp[n++] = pa[(ea+1+i) % na];
- // Add pb
- for (int i = 0; i < nb-1; ++i)
- tmp[n++] = pb[(eb+1+i) % nb];
-
- memcpy(pa, tmp, sizeof(unsigned short)*nvp);
- }
- static void pushFront(int v, int* arr, int& an)
- {
- an++;
- for (int i = an-1; i > 0; --i) arr[i] = arr[i-1];
- arr[0] = v;
- }
- static void pushBack(int v, int* arr, int& an)
- {
- arr[an] = v;
- an++;
- }
- static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem)
- {
- const int nvp = mesh.nvp;
-
- // Count number of polygons to remove.
- int numRemovedVerts = 0;
- int numTouchedVerts = 0;
- int numRemainingEdges = 0;
- for (int i = 0; i < mesh.npolys; ++i)
- {
- unsigned short* p = &mesh.polys[i*nvp*2];
- const int nv = countPolyVerts(p, nvp);
- int numRemoved = 0;
- int numVerts = 0;
- for (int j = 0; j < nv; ++j)
- {
- if (p[j] == rem)
- {
- numTouchedVerts++;
- numRemoved++;
- }
- numVerts++;
- }
- if (numRemoved)
- {
- numRemovedVerts += numRemoved;
- numRemainingEdges += numVerts-(numRemoved+1);
- }
- }
-
- // There would be too few edges remaining to create a polygon.
- // This can happen for example when a tip of a triangle is marked
- // as deletion, but there are no other polys that share the vertex.
- // In this case, the vertex should not be removed.
- if (numRemainingEdges <= 2)
- return false;
-
- // Find edges which share the removed vertex.
- const int maxEdges = numTouchedVerts*2;
- int nedges = 0;
- rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP));
- if (!edges)
- {
- ctx->log(RC_LOG_WARNING, "canRemoveVertex: Out of memory 'edges' (%d).", maxEdges*3);
- return false;
- }
-
- for (int i = 0; i < mesh.npolys; ++i)
- {
- unsigned short* p = &mesh.polys[i*nvp*2];
- const int nv = countPolyVerts(p, nvp);
- // Collect edges which touches the removed vertex.
- for (int j = 0, k = nv-1; j < nv; k = j++)
- {
- if (p[j] == rem || p[k] == rem)
- {
- // Arrange edge so that a=rem.
- int a = p[j], b = p[k];
- if (b == rem)
- rcSwap(a,b);
-
- // Check if the edge exists
- bool exists = false;
- for (int m = 0; m < nedges; ++m)
- {
- int* e = &edges[m*3];
- if (e[1] == b)
- {
- // Exists, increment vertex share count.
- e[2]++;
- exists = true;
- }
- }
- // Add new edge.
- if (!exists)
- {
- int* e = &edges[nedges*3];
- e[0] = a;
- e[1] = b;
- e[2] = 1;
- nedges++;
- }
- }
- }
- }
- // There should be no more than 2 open edges.
- // This catches the case that two non-adjacent polygons
- // share the removed vertex. In that case, do not remove the vertex.
- int numOpenEdges = 0;
- for (int i = 0; i < nedges; ++i)
- {
- if (edges[i*3+2] < 2)
- numOpenEdges++;
- }
- if (numOpenEdges > 2)
- return false;
-
- return true;
- }
- static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem, const int maxTris)
- {
- const int nvp = mesh.nvp;
- // Count number of polygons to remove.
- int numRemovedVerts = 0;
- for (int i = 0; i < mesh.npolys; ++i)
- {
- unsigned short* p = &mesh.polys[i*nvp*2];
- const int nv = countPolyVerts(p, nvp);
- for (int j = 0; j < nv; ++j)
- {
- if (p[j] == rem)
- numRemovedVerts++;
- }
- }
-
- int nedges = 0;
- rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP));
- if (!edges)
- {
- ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4);
- return false;
- }
- int nhole = 0;
- rcScopedDelete<int> hole((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
- if (!hole)
- {
- ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp);
- return false;
- }
- int nhreg = 0;
- rcScopedDelete<int> hreg((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
- if (!hreg)
- {
- ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp);
- return false;
- }
- int nharea = 0;
- rcScopedDelete<int> harea((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
- if (!harea)
- {
- ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp);
- return false;
- }
-
- for (int i = 0; i < mesh.npolys; ++i)
- {
- unsigned short* p = &mesh.polys[i*nvp*2];
- const int nv = countPolyVerts(p, nvp);
- bool hasRem = false;
- for (int j = 0; j < nv; ++j)
- if (p[j] == rem) hasRem = true;
- if (hasRem)
- {
- // Collect edges which does not touch the removed vertex.
- for (int j = 0, k = nv-1; j < nv; k = j++)
- {
- if (p[j] != rem && p[k] != rem)
- {
- int* e = &edges[nedges*4];
- e[0] = p[k];
- e[1] = p[j];
- e[2] = mesh.regs[i];
- e[3] = mesh.areas[i];
- nedges++;
- }
- }
- // Remove the polygon.
- unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2];
- if (p != p2)
- memcpy(p,p2,sizeof(unsigned short)*nvp);
- memset(p+nvp,0xff,sizeof(unsigned short)*nvp);
- mesh.regs[i] = mesh.regs[mesh.npolys-1];
- mesh.areas[i] = mesh.areas[mesh.npolys-1];
- mesh.npolys--;
- --i;
- }
- }
-
- // Remove vertex.
- for (int i = (int)rem; i < mesh.nverts - 1; ++i)
- {
- mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
- mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
- mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
- }
- mesh.nverts--;
- // Adjust indices to match the removed vertex layout.
- for (int i = 0; i < mesh.npolys; ++i)
- {
- unsigned short* p = &mesh.polys[i*nvp*2];
- const int nv = countPolyVerts(p, nvp);
- for (int j = 0; j < nv; ++j)
- if (p[j] > rem) p[j]--;
- }
- for (int i = 0; i < nedges; ++i)
- {
- if (edges[i*4+0] > rem) edges[i*4+0]--;
- if (edges[i*4+1] > rem) edges[i*4+1]--;
- }
- if (nedges == 0)
- return true;
- // Start with one vertex, keep appending connected
- // segments to the start and end of the hole.
- pushBack(edges[0], hole, nhole);
- pushBack(edges[2], hreg, nhreg);
- pushBack(edges[3], harea, nharea);
-
- while (nedges)
- {
- bool match = false;
-
- for (int i = 0; i < nedges; ++i)
- {
- const int ea = edges[i*4+0];
- const int eb = edges[i*4+1];
- const int r = edges[i*4+2];
- const int a = edges[i*4+3];
- bool add = false;
- if (hole[0] == eb)
- {
- // The segment matches the beginning of the hole boundary.
- pushFront(ea, hole, nhole);
- pushFront(r, hreg, nhreg);
- pushFront(a, harea, nharea);
- add = true;
- }
- else if (hole[nhole-1] == ea)
- {
- // The segment matches the end of the hole boundary.
- pushBack(eb, hole, nhole);
- pushBack(r, hreg, nhreg);
- pushBack(a, harea, nharea);
- add = true;
- }
- if (add)
- {
- // The edge segment was added, remove it.
- edges[i*4+0] = edges[(nedges-1)*4+0];
- edges[i*4+1] = edges[(nedges-1)*4+1];
- edges[i*4+2] = edges[(nedges-1)*4+2];
- edges[i*4+3] = edges[(nedges-1)*4+3];
- --nedges;
- match = true;
- --i;
- }
- }
-
- if (!match)
- break;
- }
- rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP));
- if (!tris)
- {
- ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3);
- return false;
- }
- rcScopedDelete<int> tverts((int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP));
- if (!tverts)
- {
- ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4);
- return false;
- }
- rcScopedDelete<int> thole((int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP));
- if (!thole)
- {
- ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole);
- return false;
- }
- // Generate temp vertex array for triangulation.
- for (int i = 0; i < nhole; ++i)
- {
- const int pi = hole[i];
- tverts[i*4+0] = mesh.verts[pi*3+0];
- tverts[i*4+1] = mesh.verts[pi*3+1];
- tverts[i*4+2] = mesh.verts[pi*3+2];
- tverts[i*4+3] = 0;
- thole[i] = i;
- }
- // Triangulate the hole.
- int ntris = triangulate(nhole, &tverts[0], &thole[0], tris);
- if (ntris < 0)
- {
- ntris = -ntris;
- ctx->log(RC_LOG_WARNING, "removeVertex: triangulate() returned bad results.");
- }
-
- // Merge the hole triangles back to polygons.
- rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP));
- if (!polys)
- {
- ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp);
- return false;
- }
- rcScopedDelete<unsigned short> pregs((unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP));
- if (!pregs)
- {
- ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris);
- return false;
- }
- rcScopedDelete<unsigned char> pareas((unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP));
- if (!pareas)
- {
- ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris);
- return false;
- }
-
- unsigned short* tmpPoly = &polys[ntris*nvp];
-
- // Build initial polygons.
- int npolys = 0;
- memset(polys, 0xff, ntris*nvp*sizeof(unsigned short));
- for (int j = 0; j < ntris; ++j)
- {
- int* t = &tris[j*3];
- if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
- {
- polys[npolys*nvp+0] = (unsigned short)hole[t[0]];
- polys[npolys*nvp+1] = (unsigned short)hole[t[1]];
- polys[npolys*nvp+2] = (unsigned short)hole[t[2]];
- // If this polygon covers multiple region types then
- // mark it as such
- if (hreg[t[0]] != hreg[t[1]] || hreg[t[1]] != hreg[t[2]])
- pregs[npolys] = RC_MULTIPLE_REGS;
- else
- pregs[npolys] = (unsigned short)hreg[t[0]];
- pareas[npolys] = (unsigned char)harea[t[0]];
- npolys++;
- }
- }
- if (!npolys)
- return true;
-
- // Merge polygons.
- if (nvp > 3)
- {
- for (;;)
- {
- // Find best polygons to merge.
- int bestMergeVal = 0;
- int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
-
- for (int j = 0; j < npolys-1; ++j)
- {
- unsigned short* pj = &polys[j*nvp];
- for (int k = j+1; k < npolys; ++k)
- {
- unsigned short* pk = &polys[k*nvp];
- int ea, eb;
- int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
- if (v > bestMergeVal)
- {
- bestMergeVal = v;
- bestPa = j;
- bestPb = k;
- bestEa = ea;
- bestEb = eb;
- }
- }
- }
-
- if (bestMergeVal > 0)
- {
- // Found best, merge.
- unsigned short* pa = &polys[bestPa*nvp];
- unsigned short* pb = &polys[bestPb*nvp];
- mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
- if (pregs[bestPa] != pregs[bestPb])
- pregs[bestPa] = RC_MULTIPLE_REGS;
- unsigned short* last = &polys[(npolys-1)*nvp];
- if (pb != last)
- memcpy(pb, last, sizeof(unsigned short)*nvp);
- pregs[bestPb] = pregs[npolys-1];
- pareas[bestPb] = pareas[npolys-1];
- npolys--;
- }
- else
- {
- // Could not merge any polygons, stop.
- break;
- }
- }
- }
-
- // Store polygons.
- for (int i = 0; i < npolys; ++i)
- {
- if (mesh.npolys >= maxTris) break;
- unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
- memset(p,0xff,sizeof(unsigned short)*nvp*2);
- for (int j = 0; j < nvp; ++j)
- p[j] = polys[i*nvp+j];
- mesh.regs[mesh.npolys] = pregs[i];
- mesh.areas[mesh.npolys] = pareas[i];
- mesh.npolys++;
- if (mesh.npolys > maxTris)
- {
- ctx->log(RC_LOG_ERROR, "removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
- return false;
- }
- }
-
- return true;
- }
- /// @par
- ///
- /// @note If the mesh data is to be used to construct a Detour navigation mesh, then the upper
- /// limit must be retricted to <= #DT_VERTS_PER_POLYGON.
- ///
- /// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig
- bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
- {
- rcAssert(ctx);
-
- rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESH);
- rcVcopy(mesh.bmin, cset.bmin);
- rcVcopy(mesh.bmax, cset.bmax);
- mesh.cs = cset.cs;
- mesh.ch = cset.ch;
- mesh.borderSize = cset.borderSize;
- mesh.maxEdgeError = cset.maxError;
-
- int maxVertices = 0;
- int maxTris = 0;
- int maxVertsPerCont = 0;
- for (int i = 0; i < cset.nconts; ++i)
- {
- // Skip null contours.
- if (cset.conts[i].nverts < 3) continue;
- maxVertices += cset.conts[i].nverts;
- maxTris += cset.conts[i].nverts - 2;
- maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts);
- }
-
- if (maxVertices >= 0xfffe)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices);
- return false;
- }
-
- rcScopedDelete<unsigned char> vflags((unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP));
- if (!vflags)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices);
- return false;
- }
- memset(vflags, 0, maxVertices);
-
- mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM);
- if (!mesh.verts)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
- return false;
- }
- mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2, RC_ALLOC_PERM);
- if (!mesh.polys)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
- return false;
- }
- mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM);
- if (!mesh.regs)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris);
- return false;
- }
- mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM);
- if (!mesh.areas)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris);
- return false;
- }
-
- mesh.nverts = 0;
- mesh.npolys = 0;
- mesh.nvp = nvp;
- mesh.maxpolys = maxTris;
-
- memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
- memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2);
- memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
- memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
-
- rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP));
- if (!nextVert)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
- return false;
- }
- memset(nextVert, 0, sizeof(int)*maxVertices);
-
- rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
- if (!firstVert)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
- return false;
- }
- for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
- firstVert[i] = -1;
-
- rcScopedDelete<int> indices((int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP));
- if (!indices)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
- return false;
- }
- rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP));
- if (!tris)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
- return false;
- }
- rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP));
- if (!polys)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
- return false;
- }
- unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp];
- for (int i = 0; i < cset.nconts; ++i)
- {
- rcContour& cont = cset.conts[i];
-
- // Skip null contours.
- if (cont.nverts < 3)
- continue;
-
- // Triangulate contour
- for (int j = 0; j < cont.nverts; ++j)
- indices[j] = j;
-
- int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
- if (ntris <= 0)
- {
- // Bad triangulation, should not happen.
- /* printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]);
- printf("\tconst float cs = %ff;\n", cset.cs);
- printf("\tconst float ch = %ff;\n", cset.ch);
- printf("\tconst int verts[] = {\n");
- for (int k = 0; k < cont.nverts; ++k)
- {
- const int* v = &cont.verts[k*4];
- printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]);
- }
- printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/
- ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i);
- ntris = -ntris;
- }
-
- // Add and merge vertices.
- for (int j = 0; j < cont.nverts; ++j)
- {
- const int* v = &cont.verts[j*4];
- indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
- mesh.verts, firstVert, nextVert, mesh.nverts);
- if (v[3] & RC_BORDER_VERTEX)
- {
- // This vertex should be removed.
- vflags[indices[j]] = 1;
- }
- }
- // Build initial polygons.
- int npolys = 0;
- memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
- for (int j = 0; j < ntris; ++j)
- {
- int* t = &tris[j*3];
- if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
- {
- polys[npolys*nvp+0] = (unsigned short)indices[t[0]];
- polys[npolys*nvp+1] = (unsigned short)indices[t[1]];
- polys[npolys*nvp+2] = (unsigned short)indices[t[2]];
- npolys++;
- }
- }
- if (!npolys)
- continue;
-
- // Merge polygons.
- if (nvp > 3)
- {
- for(;;)
- {
- // Find best polygons to merge.
- int bestMergeVal = 0;
- int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
-
- for (int j = 0; j < npolys-1; ++j)
- {
- unsigned short* pj = &polys[j*nvp];
- for (int k = j+1; k < npolys; ++k)
- {
- unsigned short* pk = &polys[k*nvp];
- int ea, eb;
- int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
- if (v > bestMergeVal)
- {
- bestMergeVal = v;
- bestPa = j;
- bestPb = k;
- bestEa = ea;
- bestEb = eb;
- }
- }
- }
-
- if (bestMergeVal > 0)
- {
- // Found best, merge.
- unsigned short* pa = &polys[bestPa*nvp];
- unsigned short* pb = &polys[bestPb*nvp];
- mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
- unsigned short* lastPoly = &polys[(npolys-1)*nvp];
- if (pb != lastPoly)
- memcpy(pb, lastPoly, sizeof(unsigned short)*nvp);
- npolys--;
- }
- else
- {
- // Could not merge any polygons, stop.
- break;
- }
- }
- }
-
- // Store polygons.
- for (int j = 0; j < npolys; ++j)
- {
- unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
- unsigned short* q = &polys[j*nvp];
- for (int k = 0; k < nvp; ++k)
- p[k] = q[k];
- mesh.regs[mesh.npolys] = cont.reg;
- mesh.areas[mesh.npolys] = cont.area;
- mesh.npolys++;
- if (mesh.npolys > maxTris)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
- return false;
- }
- }
- }
-
-
- // Remove edge vertices.
- for (int i = 0; i < mesh.nverts; ++i)
- {
- if (vflags[i])
- {
- if (!canRemoveVertex(ctx, mesh, (unsigned short)i))
- continue;
- if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris))
- {
- // Failed to remove vertex
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i);
- return false;
- }
- // Remove vertex
- // Note: mesh.nverts is already decremented inside removeVertex()!
- // Fixup vertex flags
- for (int j = i; j < mesh.nverts; ++j)
- vflags[j] = vflags[j+1];
- --i;
- }
- }
-
- // Calculate adjacency.
- if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp))
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
- return false;
- }
-
- // Find portal edges
- if (mesh.borderSize > 0)
- {
- const int w = cset.width;
- const int h = cset.height;
- for (int i = 0; i < mesh.npolys; ++i)
- {
- unsigned short* p = &mesh.polys[i*2*nvp];
- for (int j = 0; j < nvp; ++j)
- {
- if (p[j] == RC_MESH_NULL_IDX) break;
- // Skip connected edges.
- if (p[nvp+j] != RC_MESH_NULL_IDX)
- continue;
- int nj = j+1;
- if (nj >= nvp || p[nj] == RC_MESH_NULL_IDX) nj = 0;
- const unsigned short* va = &mesh.verts[p[j]*3];
- const unsigned short* vb = &mesh.verts[p[nj]*3];
- if ((int)va[0] == 0 && (int)vb[0] == 0)
- p[nvp+j] = 0x8000 | 0;
- else if ((int)va[2] == h && (int)vb[2] == h)
- p[nvp+j] = 0x8000 | 1;
- else if ((int)va[0] == w && (int)vb[0] == w)
- p[nvp+j] = 0x8000 | 2;
- else if ((int)va[2] == 0 && (int)vb[2] == 0)
- p[nvp+j] = 0x8000 | 3;
- }
- }
- }
- // Just allocate the mesh flags array. The user is resposible to fill it.
- mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM);
- if (!mesh.flags)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys);
- return false;
- }
- memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys);
-
- if (mesh.nverts > 0xffff)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
- }
- if (mesh.npolys > 0xffff)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
- }
-
- return true;
- }
- /// @see rcAllocPolyMesh, rcPolyMesh
- bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
- {
- rcAssert(ctx);
-
- if (!nmeshes || !meshes)
- return true;
- rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESH);
- mesh.nvp = meshes[0]->nvp;
- mesh.cs = meshes[0]->cs;
- mesh.ch = meshes[0]->ch;
- rcVcopy(mesh.bmin, meshes[0]->bmin);
- rcVcopy(mesh.bmax, meshes[0]->bmax);
- int maxVerts = 0;
- int maxPolys = 0;
- int maxVertsPerMesh = 0;
- for (int i = 0; i < nmeshes; ++i)
- {
- rcVmin(mesh.bmin, meshes[i]->bmin);
- rcVmax(mesh.bmax, meshes[i]->bmax);
- maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts);
- maxVerts += meshes[i]->nverts;
- maxPolys += meshes[i]->npolys;
- }
-
- mesh.nverts = 0;
- mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVerts*3, RC_ALLOC_PERM);
- if (!mesh.verts)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3);
- return false;
- }
- mesh.npolys = 0;
- mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys*2*mesh.nvp, RC_ALLOC_PERM);
- if (!mesh.polys)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp);
- return false;
- }
- memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp);
- mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
- if (!mesh.regs)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys);
- return false;
- }
- memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys);
- mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxPolys, RC_ALLOC_PERM);
- if (!mesh.areas)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.areas' (%d).", maxPolys);
- return false;
- }
- memset(mesh.areas, 0, sizeof(unsigned char)*maxPolys);
- mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
- if (!mesh.flags)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.flags' (%d).", maxPolys);
- return false;
- }
- memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys);
-
- rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP));
- if (!nextVert)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
- return false;
- }
- memset(nextVert, 0, sizeof(int)*maxVerts);
-
- rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
- if (!firstVert)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
- return false;
- }
- for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
- firstVert[i] = -1;
- rcScopedDelete<unsigned short> vremap((unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM));
- if (!vremap)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
- return false;
- }
- memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh);
-
- for (int i = 0; i < nmeshes; ++i)
- {
- const rcPolyMesh* pmesh = meshes[i];
-
- const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
- const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
-
- bool isMinX = (ox == 0);
- bool isMinZ = (oz == 0);
- bool isMaxX = ((unsigned short)floorf((mesh.bmax[0] - pmesh->bmax[0]) / mesh.cs + 0.5f)) == 0;
- bool isMaxZ = ((unsigned short)floorf((mesh.bmax[2] - pmesh->bmax[2]) / mesh.cs + 0.5f)) == 0;
- bool isOnBorder = (isMinX || isMinZ || isMaxX || isMaxZ);
- for (int j = 0; j < pmesh->nverts; ++j)
- {
- unsigned short* v = &pmesh->verts[j*3];
- vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz,
- mesh.verts, firstVert, nextVert, mesh.nverts);
- }
-
- for (int j = 0; j < pmesh->npolys; ++j)
- {
- unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp];
- unsigned short* src = &pmesh->polys[j*2*mesh.nvp];
- mesh.regs[mesh.npolys] = pmesh->regs[j];
- mesh.areas[mesh.npolys] = pmesh->areas[j];
- mesh.flags[mesh.npolys] = pmesh->flags[j];
- mesh.npolys++;
- for (int k = 0; k < mesh.nvp; ++k)
- {
- if (src[k] == RC_MESH_NULL_IDX) break;
- tgt[k] = vremap[src[k]];
- }
- if (isOnBorder)
- {
- for (int k = mesh.nvp; k < mesh.nvp * 2; ++k)
- {
- if (src[k] & 0x8000 && src[k] != 0xffff)
- {
- unsigned short dir = src[k] & 0xf;
- switch (dir)
- {
- case 0: // Portal x-
- if (isMinX)
- tgt[k] = src[k];
- break;
- case 1: // Portal z+
- if (isMaxZ)
- tgt[k] = src[k];
- break;
- case 2: // Portal x+
- if (isMaxX)
- tgt[k] = src[k];
- break;
- case 3: // Portal z-
- if (isMinZ)
- tgt[k] = src[k];
- break;
- }
- }
- }
- }
- }
- }
- // Calculate adjacency.
- if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp))
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed.");
- return false;
- }
- if (mesh.nverts > 0xffff)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
- }
- if (mesh.npolys > 0xffff)
- {
- ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
- }
-
- return true;
- }
- bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst)
- {
- rcAssert(ctx);
-
- // Destination must be empty.
- rcAssert(dst.verts == 0);
- rcAssert(dst.polys == 0);
- rcAssert(dst.regs == 0);
- rcAssert(dst.areas == 0);
- rcAssert(dst.flags == 0);
-
- dst.nverts = src.nverts;
- dst.npolys = src.npolys;
- dst.maxpolys = src.npolys;
- dst.nvp = src.nvp;
- rcVcopy(dst.bmin, src.bmin);
- rcVcopy(dst.bmax, src.bmax);
- dst.cs = src.cs;
- dst.ch = src.ch;
- dst.borderSize = src.borderSize;
- dst.maxEdgeError = src.maxEdgeError;
-
- dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM);
- if (!dst.verts)
- {
- ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3);
- return false;
- }
- memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3);
-
- dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM);
- if (!dst.polys)
- {
- ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp);
- return false;
- }
- memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp);
-
- dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
- if (!dst.regs)
- {
- ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys);
- return false;
- }
- memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys);
-
- dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM);
- if (!dst.areas)
- {
- ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys);
- return false;
- }
- memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys);
-
- dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
- if (!dst.flags)
- {
- ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys);
- return false;
- }
- memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys);
-
- return true;
- }
|