v3_addr.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351
  1. /*
  2. * Contributed to the OpenSSL Project by the American Registry for
  3. * Internet Numbers ("ARIN").
  4. */
  5. /* ====================================================================
  6. * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. *
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, this list of conditions and the following disclaimer.
  14. *
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in
  17. * the documentation and/or other materials provided with the
  18. * distribution.
  19. *
  20. * 3. All advertising materials mentioning features or use of this
  21. * software must display the following acknowledgment:
  22. * "This product includes software developed by the OpenSSL Project
  23. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  24. *
  25. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  26. * endorse or promote products derived from this software without
  27. * prior written permission. For written permission, please contact
  28. * licensing@OpenSSL.org.
  29. *
  30. * 5. Products derived from this software may not be called "OpenSSL"
  31. * nor may "OpenSSL" appear in their names without prior written
  32. * permission of the OpenSSL Project.
  33. *
  34. * 6. Redistributions of any form whatsoever must retain the following
  35. * acknowledgment:
  36. * "This product includes software developed by the OpenSSL Project
  37. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  38. *
  39. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  40. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  41. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  42. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  43. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  44. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  45. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  46. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  48. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  49. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  50. * OF THE POSSIBILITY OF SUCH DAMAGE.
  51. * ====================================================================
  52. *
  53. * This product includes cryptographic software written by Eric Young
  54. * (eay@cryptsoft.com). This product includes software written by Tim
  55. * Hudson (tjh@cryptsoft.com).
  56. */
  57. /*
  58. * Implementation of RFC 3779 section 2.2.
  59. */
  60. #include <stdio.h>
  61. #include <stdlib.h>
  62. #include "cryptlib.h"
  63. #include <openssl/conf.h>
  64. #include <openssl/asn1.h>
  65. #include <openssl/asn1t.h>
  66. #include <openssl/buffer.h>
  67. #include <openssl/x509v3.h>
  68. #ifndef OPENSSL_NO_RFC3779
  69. /*
  70. * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
  71. */
  72. ASN1_SEQUENCE(IPAddressRange) = {
  73. ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
  74. ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
  75. } ASN1_SEQUENCE_END(IPAddressRange)
  76. ASN1_CHOICE(IPAddressOrRange) = {
  77. ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
  78. ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
  79. } ASN1_CHOICE_END(IPAddressOrRange)
  80. ASN1_CHOICE(IPAddressChoice) = {
  81. ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
  82. ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
  83. } ASN1_CHOICE_END(IPAddressChoice)
  84. ASN1_SEQUENCE(IPAddressFamily) = {
  85. ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
  86. ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
  87. } ASN1_SEQUENCE_END(IPAddressFamily)
  88. ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
  89. ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
  90. IPAddrBlocks, IPAddressFamily)
  91. ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
  92. IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
  93. IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
  94. IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
  95. IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
  96. /*
  97. * How much buffer space do we need for a raw address?
  98. */
  99. # define ADDR_RAW_BUF_LEN 16
  100. /*
  101. * What's the address length associated with this AFI?
  102. */
  103. static int length_from_afi(const unsigned afi)
  104. {
  105. switch (afi) {
  106. case IANA_AFI_IPV4:
  107. return 4;
  108. case IANA_AFI_IPV6:
  109. return 16;
  110. default:
  111. return 0;
  112. }
  113. }
  114. /*
  115. * Extract the AFI from an IPAddressFamily.
  116. */
  117. unsigned int v3_addr_get_afi(const IPAddressFamily *f)
  118. {
  119. return ((f != NULL &&
  120. f->addressFamily != NULL && f->addressFamily->data != NULL)
  121. ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
  122. : 0);
  123. }
  124. /*
  125. * Expand the bitstring form of an address into a raw byte array.
  126. * At the moment this is coded for simplicity, not speed.
  127. */
  128. static int addr_expand(unsigned char *addr,
  129. const ASN1_BIT_STRING *bs,
  130. const int length, const unsigned char fill)
  131. {
  132. if (bs->length < 0 || bs->length > length)
  133. return 0;
  134. if (bs->length > 0) {
  135. memcpy(addr, bs->data, bs->length);
  136. if ((bs->flags & 7) != 0) {
  137. unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
  138. if (fill == 0)
  139. addr[bs->length - 1] &= ~mask;
  140. else
  141. addr[bs->length - 1] |= mask;
  142. }
  143. }
  144. memset(addr + bs->length, fill, length - bs->length);
  145. return 1;
  146. }
  147. /*
  148. * Extract the prefix length from a bitstring.
  149. */
  150. # define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
  151. /*
  152. * i2r handler for one address bitstring.
  153. */
  154. static int i2r_address(BIO *out,
  155. const unsigned afi,
  156. const unsigned char fill, const ASN1_BIT_STRING *bs)
  157. {
  158. unsigned char addr[ADDR_RAW_BUF_LEN];
  159. int i, n;
  160. if (bs->length < 0)
  161. return 0;
  162. switch (afi) {
  163. case IANA_AFI_IPV4:
  164. if (!addr_expand(addr, bs, 4, fill))
  165. return 0;
  166. BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
  167. break;
  168. case IANA_AFI_IPV6:
  169. if (!addr_expand(addr, bs, 16, fill))
  170. return 0;
  171. for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
  172. n -= 2) ;
  173. for (i = 0; i < n; i += 2)
  174. BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
  175. (i < 14 ? ":" : ""));
  176. if (i < 16)
  177. BIO_puts(out, ":");
  178. if (i == 0)
  179. BIO_puts(out, ":");
  180. break;
  181. default:
  182. for (i = 0; i < bs->length; i++)
  183. BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
  184. BIO_printf(out, "[%d]", (int)(bs->flags & 7));
  185. break;
  186. }
  187. return 1;
  188. }
  189. /*
  190. * i2r handler for a sequence of addresses and ranges.
  191. */
  192. static int i2r_IPAddressOrRanges(BIO *out,
  193. const int indent,
  194. const IPAddressOrRanges *aors,
  195. const unsigned afi)
  196. {
  197. int i;
  198. for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
  199. const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
  200. BIO_printf(out, "%*s", indent, "");
  201. switch (aor->type) {
  202. case IPAddressOrRange_addressPrefix:
  203. if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
  204. return 0;
  205. BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
  206. continue;
  207. case IPAddressOrRange_addressRange:
  208. if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
  209. return 0;
  210. BIO_puts(out, "-");
  211. if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
  212. return 0;
  213. BIO_puts(out, "\n");
  214. continue;
  215. }
  216. }
  217. return 1;
  218. }
  219. /*
  220. * i2r handler for an IPAddrBlocks extension.
  221. */
  222. static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
  223. void *ext, BIO *out, int indent)
  224. {
  225. const IPAddrBlocks *addr = ext;
  226. int i;
  227. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  228. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  229. const unsigned int afi = v3_addr_get_afi(f);
  230. switch (afi) {
  231. case IANA_AFI_IPV4:
  232. BIO_printf(out, "%*sIPv4", indent, "");
  233. break;
  234. case IANA_AFI_IPV6:
  235. BIO_printf(out, "%*sIPv6", indent, "");
  236. break;
  237. default:
  238. BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
  239. break;
  240. }
  241. if (f->addressFamily->length > 2) {
  242. switch (f->addressFamily->data[2]) {
  243. case 1:
  244. BIO_puts(out, " (Unicast)");
  245. break;
  246. case 2:
  247. BIO_puts(out, " (Multicast)");
  248. break;
  249. case 3:
  250. BIO_puts(out, " (Unicast/Multicast)");
  251. break;
  252. case 4:
  253. BIO_puts(out, " (MPLS)");
  254. break;
  255. case 64:
  256. BIO_puts(out, " (Tunnel)");
  257. break;
  258. case 65:
  259. BIO_puts(out, " (VPLS)");
  260. break;
  261. case 66:
  262. BIO_puts(out, " (BGP MDT)");
  263. break;
  264. case 128:
  265. BIO_puts(out, " (MPLS-labeled VPN)");
  266. break;
  267. default:
  268. BIO_printf(out, " (Unknown SAFI %u)",
  269. (unsigned)f->addressFamily->data[2]);
  270. break;
  271. }
  272. }
  273. switch (f->ipAddressChoice->type) {
  274. case IPAddressChoice_inherit:
  275. BIO_puts(out, ": inherit\n");
  276. break;
  277. case IPAddressChoice_addressesOrRanges:
  278. BIO_puts(out, ":\n");
  279. if (!i2r_IPAddressOrRanges(out,
  280. indent + 2,
  281. f->ipAddressChoice->
  282. u.addressesOrRanges, afi))
  283. return 0;
  284. break;
  285. }
  286. }
  287. return 1;
  288. }
  289. /*
  290. * Sort comparison function for a sequence of IPAddressOrRange
  291. * elements.
  292. *
  293. * There's no sane answer we can give if addr_expand() fails, and an
  294. * assertion failure on externally supplied data is seriously uncool,
  295. * so we just arbitrarily declare that if given invalid inputs this
  296. * function returns -1. If this messes up your preferred sort order
  297. * for garbage input, tough noogies.
  298. */
  299. static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
  300. const IPAddressOrRange *b, const int length)
  301. {
  302. unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
  303. int prefixlen_a = 0, prefixlen_b = 0;
  304. int r;
  305. switch (a->type) {
  306. case IPAddressOrRange_addressPrefix:
  307. if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
  308. return -1;
  309. prefixlen_a = addr_prefixlen(a->u.addressPrefix);
  310. break;
  311. case IPAddressOrRange_addressRange:
  312. if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
  313. return -1;
  314. prefixlen_a = length * 8;
  315. break;
  316. }
  317. switch (b->type) {
  318. case IPAddressOrRange_addressPrefix:
  319. if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
  320. return -1;
  321. prefixlen_b = addr_prefixlen(b->u.addressPrefix);
  322. break;
  323. case IPAddressOrRange_addressRange:
  324. if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
  325. return -1;
  326. prefixlen_b = length * 8;
  327. break;
  328. }
  329. if ((r = memcmp(addr_a, addr_b, length)) != 0)
  330. return r;
  331. else
  332. return prefixlen_a - prefixlen_b;
  333. }
  334. /*
  335. * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
  336. * comparision routines are only allowed two arguments.
  337. */
  338. static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  339. const IPAddressOrRange *const *b)
  340. {
  341. return IPAddressOrRange_cmp(*a, *b, 4);
  342. }
  343. /*
  344. * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
  345. * comparision routines are only allowed two arguments.
  346. */
  347. static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  348. const IPAddressOrRange *const *b)
  349. {
  350. return IPAddressOrRange_cmp(*a, *b, 16);
  351. }
  352. /*
  353. * Calculate whether a range collapses to a prefix.
  354. * See last paragraph of RFC 3779 2.2.3.7.
  355. */
  356. static int range_should_be_prefix(const unsigned char *min,
  357. const unsigned char *max, const int length)
  358. {
  359. unsigned char mask;
  360. int i, j;
  361. OPENSSL_assert(memcmp(min, max, length) <= 0);
  362. for (i = 0; i < length && min[i] == max[i]; i++) ;
  363. for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
  364. if (i < j)
  365. return -1;
  366. if (i > j)
  367. return i * 8;
  368. mask = min[i] ^ max[i];
  369. switch (mask) {
  370. case 0x01:
  371. j = 7;
  372. break;
  373. case 0x03:
  374. j = 6;
  375. break;
  376. case 0x07:
  377. j = 5;
  378. break;
  379. case 0x0F:
  380. j = 4;
  381. break;
  382. case 0x1F:
  383. j = 3;
  384. break;
  385. case 0x3F:
  386. j = 2;
  387. break;
  388. case 0x7F:
  389. j = 1;
  390. break;
  391. default:
  392. return -1;
  393. }
  394. if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
  395. return -1;
  396. else
  397. return i * 8 + j;
  398. }
  399. /*
  400. * Construct a prefix.
  401. */
  402. static int make_addressPrefix(IPAddressOrRange **result,
  403. unsigned char *addr, const int prefixlen)
  404. {
  405. int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
  406. IPAddressOrRange *aor = IPAddressOrRange_new();
  407. if (aor == NULL)
  408. return 0;
  409. aor->type = IPAddressOrRange_addressPrefix;
  410. if (aor->u.addressPrefix == NULL &&
  411. (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
  412. goto err;
  413. if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
  414. goto err;
  415. aor->u.addressPrefix->flags &= ~7;
  416. aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  417. if (bitlen > 0) {
  418. aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
  419. aor->u.addressPrefix->flags |= 8 - bitlen;
  420. }
  421. *result = aor;
  422. return 1;
  423. err:
  424. IPAddressOrRange_free(aor);
  425. return 0;
  426. }
  427. /*
  428. * Construct a range. If it can be expressed as a prefix,
  429. * return a prefix instead. Doing this here simplifies
  430. * the rest of the code considerably.
  431. */
  432. static int make_addressRange(IPAddressOrRange **result,
  433. unsigned char *min,
  434. unsigned char *max, const int length)
  435. {
  436. IPAddressOrRange *aor;
  437. int i, prefixlen;
  438. if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
  439. return make_addressPrefix(result, min, prefixlen);
  440. if ((aor = IPAddressOrRange_new()) == NULL)
  441. return 0;
  442. aor->type = IPAddressOrRange_addressRange;
  443. OPENSSL_assert(aor->u.addressRange == NULL);
  444. if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
  445. goto err;
  446. if (aor->u.addressRange->min == NULL &&
  447. (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
  448. goto err;
  449. if (aor->u.addressRange->max == NULL &&
  450. (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
  451. goto err;
  452. for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
  453. if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
  454. goto err;
  455. aor->u.addressRange->min->flags &= ~7;
  456. aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  457. if (i > 0) {
  458. unsigned char b = min[i - 1];
  459. int j = 1;
  460. while ((b & (0xFFU >> j)) != 0)
  461. ++j;
  462. aor->u.addressRange->min->flags |= 8 - j;
  463. }
  464. for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
  465. if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
  466. goto err;
  467. aor->u.addressRange->max->flags &= ~7;
  468. aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  469. if (i > 0) {
  470. unsigned char b = max[i - 1];
  471. int j = 1;
  472. while ((b & (0xFFU >> j)) != (0xFFU >> j))
  473. ++j;
  474. aor->u.addressRange->max->flags |= 8 - j;
  475. }
  476. *result = aor;
  477. return 1;
  478. err:
  479. IPAddressOrRange_free(aor);
  480. return 0;
  481. }
  482. /*
  483. * Construct a new address family or find an existing one.
  484. */
  485. static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
  486. const unsigned afi,
  487. const unsigned *safi)
  488. {
  489. IPAddressFamily *f;
  490. unsigned char key[3];
  491. unsigned keylen;
  492. int i;
  493. key[0] = (afi >> 8) & 0xFF;
  494. key[1] = afi & 0xFF;
  495. if (safi != NULL) {
  496. key[2] = *safi & 0xFF;
  497. keylen = 3;
  498. } else {
  499. keylen = 2;
  500. }
  501. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  502. f = sk_IPAddressFamily_value(addr, i);
  503. OPENSSL_assert(f->addressFamily->data != NULL);
  504. if (f->addressFamily->length == keylen &&
  505. !memcmp(f->addressFamily->data, key, keylen))
  506. return f;
  507. }
  508. if ((f = IPAddressFamily_new()) == NULL)
  509. goto err;
  510. if (f->ipAddressChoice == NULL &&
  511. (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
  512. goto err;
  513. if (f->addressFamily == NULL &&
  514. (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
  515. goto err;
  516. if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
  517. goto err;
  518. if (!sk_IPAddressFamily_push(addr, f))
  519. goto err;
  520. return f;
  521. err:
  522. IPAddressFamily_free(f);
  523. return NULL;
  524. }
  525. /*
  526. * Add an inheritance element.
  527. */
  528. int v3_addr_add_inherit(IPAddrBlocks *addr,
  529. const unsigned afi, const unsigned *safi)
  530. {
  531. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  532. if (f == NULL ||
  533. f->ipAddressChoice == NULL ||
  534. (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  535. f->ipAddressChoice->u.addressesOrRanges != NULL))
  536. return 0;
  537. if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  538. f->ipAddressChoice->u.inherit != NULL)
  539. return 1;
  540. if (f->ipAddressChoice->u.inherit == NULL &&
  541. (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
  542. return 0;
  543. f->ipAddressChoice->type = IPAddressChoice_inherit;
  544. return 1;
  545. }
  546. /*
  547. * Construct an IPAddressOrRange sequence, or return an existing one.
  548. */
  549. static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
  550. const unsigned afi,
  551. const unsigned *safi)
  552. {
  553. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  554. IPAddressOrRanges *aors = NULL;
  555. if (f == NULL ||
  556. f->ipAddressChoice == NULL ||
  557. (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  558. f->ipAddressChoice->u.inherit != NULL))
  559. return NULL;
  560. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
  561. aors = f->ipAddressChoice->u.addressesOrRanges;
  562. if (aors != NULL)
  563. return aors;
  564. if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
  565. return NULL;
  566. switch (afi) {
  567. case IANA_AFI_IPV4:
  568. (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
  569. break;
  570. case IANA_AFI_IPV6:
  571. (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
  572. break;
  573. }
  574. f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
  575. f->ipAddressChoice->u.addressesOrRanges = aors;
  576. return aors;
  577. }
  578. /*
  579. * Add a prefix.
  580. */
  581. int v3_addr_add_prefix(IPAddrBlocks *addr,
  582. const unsigned afi,
  583. const unsigned *safi,
  584. unsigned char *a, const int prefixlen)
  585. {
  586. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  587. IPAddressOrRange *aor;
  588. if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
  589. return 0;
  590. if (sk_IPAddressOrRange_push(aors, aor))
  591. return 1;
  592. IPAddressOrRange_free(aor);
  593. return 0;
  594. }
  595. /*
  596. * Add a range.
  597. */
  598. int v3_addr_add_range(IPAddrBlocks *addr,
  599. const unsigned afi,
  600. const unsigned *safi,
  601. unsigned char *min, unsigned char *max)
  602. {
  603. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  604. IPAddressOrRange *aor;
  605. int length = length_from_afi(afi);
  606. if (aors == NULL)
  607. return 0;
  608. if (!make_addressRange(&aor, min, max, length))
  609. return 0;
  610. if (sk_IPAddressOrRange_push(aors, aor))
  611. return 1;
  612. IPAddressOrRange_free(aor);
  613. return 0;
  614. }
  615. /*
  616. * Extract min and max values from an IPAddressOrRange.
  617. */
  618. static int extract_min_max(IPAddressOrRange *aor,
  619. unsigned char *min, unsigned char *max, int length)
  620. {
  621. if (aor == NULL || min == NULL || max == NULL)
  622. return 0;
  623. switch (aor->type) {
  624. case IPAddressOrRange_addressPrefix:
  625. return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
  626. addr_expand(max, aor->u.addressPrefix, length, 0xFF));
  627. case IPAddressOrRange_addressRange:
  628. return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
  629. addr_expand(max, aor->u.addressRange->max, length, 0xFF));
  630. }
  631. return 0;
  632. }
  633. /*
  634. * Public wrapper for extract_min_max().
  635. */
  636. int v3_addr_get_range(IPAddressOrRange *aor,
  637. const unsigned afi,
  638. unsigned char *min,
  639. unsigned char *max, const int length)
  640. {
  641. int afi_length = length_from_afi(afi);
  642. if (aor == NULL || min == NULL || max == NULL ||
  643. afi_length == 0 || length < afi_length ||
  644. (aor->type != IPAddressOrRange_addressPrefix &&
  645. aor->type != IPAddressOrRange_addressRange) ||
  646. !extract_min_max(aor, min, max, afi_length))
  647. return 0;
  648. return afi_length;
  649. }
  650. /*
  651. * Sort comparision function for a sequence of IPAddressFamily.
  652. *
  653. * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
  654. * the ordering: I can read it as meaning that IPv6 without a SAFI
  655. * comes before IPv4 with a SAFI, which seems pretty weird. The
  656. * examples in appendix B suggest that the author intended the
  657. * null-SAFI rule to apply only within a single AFI, which is what I
  658. * would have expected and is what the following code implements.
  659. */
  660. static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
  661. const IPAddressFamily *const *b_)
  662. {
  663. const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
  664. const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
  665. int len = ((a->length <= b->length) ? a->length : b->length);
  666. int cmp = memcmp(a->data, b->data, len);
  667. return cmp ? cmp : a->length - b->length;
  668. }
  669. /*
  670. * Check whether an IPAddrBLocks is in canonical form.
  671. */
  672. int v3_addr_is_canonical(IPAddrBlocks *addr)
  673. {
  674. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  675. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  676. IPAddressOrRanges *aors;
  677. int i, j, k;
  678. /*
  679. * Empty extension is cannonical.
  680. */
  681. if (addr == NULL)
  682. return 1;
  683. /*
  684. * Check whether the top-level list is in order.
  685. */
  686. for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
  687. const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
  688. const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
  689. if (IPAddressFamily_cmp(&a, &b) >= 0)
  690. return 0;
  691. }
  692. /*
  693. * Top level's ok, now check each address family.
  694. */
  695. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  696. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  697. int length = length_from_afi(v3_addr_get_afi(f));
  698. /*
  699. * Inheritance is canonical. Anything other than inheritance or
  700. * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
  701. */
  702. if (f == NULL || f->ipAddressChoice == NULL)
  703. return 0;
  704. switch (f->ipAddressChoice->type) {
  705. case IPAddressChoice_inherit:
  706. continue;
  707. case IPAddressChoice_addressesOrRanges:
  708. break;
  709. default:
  710. return 0;
  711. }
  712. /*
  713. * It's an IPAddressOrRanges sequence, check it.
  714. */
  715. aors = f->ipAddressChoice->u.addressesOrRanges;
  716. if (sk_IPAddressOrRange_num(aors) == 0)
  717. return 0;
  718. for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
  719. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  720. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
  721. if (!extract_min_max(a, a_min, a_max, length) ||
  722. !extract_min_max(b, b_min, b_max, length))
  723. return 0;
  724. /*
  725. * Punt misordered list, overlapping start, or inverted range.
  726. */
  727. if (memcmp(a_min, b_min, length) >= 0 ||
  728. memcmp(a_min, a_max, length) > 0 ||
  729. memcmp(b_min, b_max, length) > 0)
  730. return 0;
  731. /*
  732. * Punt if adjacent or overlapping. Check for adjacency by
  733. * subtracting one from b_min first.
  734. */
  735. for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
  736. if (memcmp(a_max, b_min, length) >= 0)
  737. return 0;
  738. /*
  739. * Check for range that should be expressed as a prefix.
  740. */
  741. if (a->type == IPAddressOrRange_addressRange &&
  742. range_should_be_prefix(a_min, a_max, length) >= 0)
  743. return 0;
  744. }
  745. /*
  746. * Check range to see if it's inverted or should be a
  747. * prefix.
  748. */
  749. j = sk_IPAddressOrRange_num(aors) - 1;
  750. {
  751. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  752. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  753. if (!extract_min_max(a, a_min, a_max, length))
  754. return 0;
  755. if (memcmp(a_min, a_max, length) > 0 ||
  756. range_should_be_prefix(a_min, a_max, length) >= 0)
  757. return 0;
  758. }
  759. }
  760. }
  761. /*
  762. * If we made it through all that, we're happy.
  763. */
  764. return 1;
  765. }
  766. /*
  767. * Whack an IPAddressOrRanges into canonical form.
  768. */
  769. static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
  770. const unsigned afi)
  771. {
  772. int i, j, length = length_from_afi(afi);
  773. /*
  774. * Sort the IPAddressOrRanges sequence.
  775. */
  776. sk_IPAddressOrRange_sort(aors);
  777. /*
  778. * Clean up representation issues, punt on duplicates or overlaps.
  779. */
  780. for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
  781. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
  782. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
  783. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  784. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  785. if (!extract_min_max(a, a_min, a_max, length) ||
  786. !extract_min_max(b, b_min, b_max, length))
  787. return 0;
  788. /*
  789. * Punt inverted ranges.
  790. */
  791. if (memcmp(a_min, a_max, length) > 0 ||
  792. memcmp(b_min, b_max, length) > 0)
  793. return 0;
  794. /*
  795. * Punt overlaps.
  796. */
  797. if (memcmp(a_max, b_min, length) >= 0)
  798. return 0;
  799. /*
  800. * Merge if a and b are adjacent. We check for
  801. * adjacency by subtracting one from b_min first.
  802. */
  803. for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
  804. if (memcmp(a_max, b_min, length) == 0) {
  805. IPAddressOrRange *merged;
  806. if (!make_addressRange(&merged, a_min, b_max, length))
  807. return 0;
  808. (void)sk_IPAddressOrRange_set(aors, i, merged);
  809. (void)sk_IPAddressOrRange_delete(aors, i + 1);
  810. IPAddressOrRange_free(a);
  811. IPAddressOrRange_free(b);
  812. --i;
  813. continue;
  814. }
  815. }
  816. /*
  817. * Check for inverted final range.
  818. */
  819. j = sk_IPAddressOrRange_num(aors) - 1;
  820. {
  821. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  822. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  823. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  824. extract_min_max(a, a_min, a_max, length);
  825. if (memcmp(a_min, a_max, length) > 0)
  826. return 0;
  827. }
  828. }
  829. return 1;
  830. }
  831. /*
  832. * Whack an IPAddrBlocks extension into canonical form.
  833. */
  834. int v3_addr_canonize(IPAddrBlocks *addr)
  835. {
  836. int i;
  837. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  838. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  839. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  840. !IPAddressOrRanges_canonize(f->ipAddressChoice->
  841. u.addressesOrRanges,
  842. v3_addr_get_afi(f)))
  843. return 0;
  844. }
  845. (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
  846. sk_IPAddressFamily_sort(addr);
  847. OPENSSL_assert(v3_addr_is_canonical(addr));
  848. return 1;
  849. }
  850. /*
  851. * v2i handler for the IPAddrBlocks extension.
  852. */
  853. static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
  854. struct v3_ext_ctx *ctx,
  855. STACK_OF(CONF_VALUE) *values)
  856. {
  857. static const char v4addr_chars[] = "0123456789.";
  858. static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
  859. IPAddrBlocks *addr = NULL;
  860. char *s = NULL, *t;
  861. int i;
  862. if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
  863. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  864. return NULL;
  865. }
  866. for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
  867. CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
  868. unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
  869. unsigned afi, *safi = NULL, safi_;
  870. const char *addr_chars;
  871. int prefixlen, i1, i2, delim, length;
  872. if (!name_cmp(val->name, "IPv4")) {
  873. afi = IANA_AFI_IPV4;
  874. } else if (!name_cmp(val->name, "IPv6")) {
  875. afi = IANA_AFI_IPV6;
  876. } else if (!name_cmp(val->name, "IPv4-SAFI")) {
  877. afi = IANA_AFI_IPV4;
  878. safi = &safi_;
  879. } else if (!name_cmp(val->name, "IPv6-SAFI")) {
  880. afi = IANA_AFI_IPV6;
  881. safi = &safi_;
  882. } else {
  883. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  884. X509V3_R_EXTENSION_NAME_ERROR);
  885. X509V3_conf_err(val);
  886. goto err;
  887. }
  888. switch (afi) {
  889. case IANA_AFI_IPV4:
  890. addr_chars = v4addr_chars;
  891. break;
  892. case IANA_AFI_IPV6:
  893. addr_chars = v6addr_chars;
  894. break;
  895. }
  896. length = length_from_afi(afi);
  897. /*
  898. * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
  899. * the other input values.
  900. */
  901. if (safi != NULL) {
  902. *safi = strtoul(val->value, &t, 0);
  903. t += strspn(t, " \t");
  904. if (*safi > 0xFF || *t++ != ':') {
  905. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
  906. X509V3_conf_err(val);
  907. goto err;
  908. }
  909. t += strspn(t, " \t");
  910. s = BUF_strdup(t);
  911. } else {
  912. s = BUF_strdup(val->value);
  913. }
  914. if (s == NULL) {
  915. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  916. goto err;
  917. }
  918. /*
  919. * Check for inheritance. Not worth additional complexity to
  920. * optimize this (seldom-used) case.
  921. */
  922. if (!strcmp(s, "inherit")) {
  923. if (!v3_addr_add_inherit(addr, afi, safi)) {
  924. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  925. X509V3_R_INVALID_INHERITANCE);
  926. X509V3_conf_err(val);
  927. goto err;
  928. }
  929. OPENSSL_free(s);
  930. s = NULL;
  931. continue;
  932. }
  933. i1 = strspn(s, addr_chars);
  934. i2 = i1 + strspn(s + i1, " \t");
  935. delim = s[i2++];
  936. s[i1] = '\0';
  937. if (a2i_ipadd(min, s) != length) {
  938. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
  939. X509V3_conf_err(val);
  940. goto err;
  941. }
  942. switch (delim) {
  943. case '/':
  944. prefixlen = (int)strtoul(s + i2, &t, 10);
  945. if (t == s + i2 || *t != '\0') {
  946. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  947. X509V3_R_EXTENSION_VALUE_ERROR);
  948. X509V3_conf_err(val);
  949. goto err;
  950. }
  951. if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
  952. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  953. goto err;
  954. }
  955. break;
  956. case '-':
  957. i1 = i2 + strspn(s + i2, " \t");
  958. i2 = i1 + strspn(s + i1, addr_chars);
  959. if (i1 == i2 || s[i2] != '\0') {
  960. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  961. X509V3_R_EXTENSION_VALUE_ERROR);
  962. X509V3_conf_err(val);
  963. goto err;
  964. }
  965. if (a2i_ipadd(max, s + i1) != length) {
  966. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  967. X509V3_R_INVALID_IPADDRESS);
  968. X509V3_conf_err(val);
  969. goto err;
  970. }
  971. if (memcmp(min, max, length_from_afi(afi)) > 0) {
  972. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  973. X509V3_R_EXTENSION_VALUE_ERROR);
  974. X509V3_conf_err(val);
  975. goto err;
  976. }
  977. if (!v3_addr_add_range(addr, afi, safi, min, max)) {
  978. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  979. goto err;
  980. }
  981. break;
  982. case '\0':
  983. if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
  984. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  985. goto err;
  986. }
  987. break;
  988. default:
  989. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  990. X509V3_R_EXTENSION_VALUE_ERROR);
  991. X509V3_conf_err(val);
  992. goto err;
  993. }
  994. OPENSSL_free(s);
  995. s = NULL;
  996. }
  997. /*
  998. * Canonize the result, then we're done.
  999. */
  1000. if (!v3_addr_canonize(addr))
  1001. goto err;
  1002. return addr;
  1003. err:
  1004. OPENSSL_free(s);
  1005. sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
  1006. return NULL;
  1007. }
  1008. /*
  1009. * OpenSSL dispatch
  1010. */
  1011. const X509V3_EXT_METHOD v3_addr = {
  1012. NID_sbgp_ipAddrBlock, /* nid */
  1013. 0, /* flags */
  1014. ASN1_ITEM_ref(IPAddrBlocks), /* template */
  1015. 0, 0, 0, 0, /* old functions, ignored */
  1016. 0, /* i2s */
  1017. 0, /* s2i */
  1018. 0, /* i2v */
  1019. v2i_IPAddrBlocks, /* v2i */
  1020. i2r_IPAddrBlocks, /* i2r */
  1021. 0, /* r2i */
  1022. NULL /* extension-specific data */
  1023. };
  1024. /*
  1025. * Figure out whether extension sues inheritance.
  1026. */
  1027. int v3_addr_inherits(IPAddrBlocks *addr)
  1028. {
  1029. int i;
  1030. if (addr == NULL)
  1031. return 0;
  1032. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  1033. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  1034. if (f->ipAddressChoice->type == IPAddressChoice_inherit)
  1035. return 1;
  1036. }
  1037. return 0;
  1038. }
  1039. /*
  1040. * Figure out whether parent contains child.
  1041. */
  1042. static int addr_contains(IPAddressOrRanges *parent,
  1043. IPAddressOrRanges *child, int length)
  1044. {
  1045. unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
  1046. unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
  1047. int p, c;
  1048. if (child == NULL || parent == child)
  1049. return 1;
  1050. if (parent == NULL)
  1051. return 0;
  1052. p = 0;
  1053. for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
  1054. if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
  1055. c_min, c_max, length))
  1056. return -1;
  1057. for (;; p++) {
  1058. if (p >= sk_IPAddressOrRange_num(parent))
  1059. return 0;
  1060. if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
  1061. p_min, p_max, length))
  1062. return 0;
  1063. if (memcmp(p_max, c_max, length) < 0)
  1064. continue;
  1065. if (memcmp(p_min, c_min, length) > 0)
  1066. return 0;
  1067. break;
  1068. }
  1069. }
  1070. return 1;
  1071. }
  1072. /*
  1073. * Test whether a is a subset of b.
  1074. */
  1075. int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
  1076. {
  1077. int i;
  1078. if (a == NULL || a == b)
  1079. return 1;
  1080. if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
  1081. return 0;
  1082. (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
  1083. for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
  1084. IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
  1085. int j = sk_IPAddressFamily_find(b, fa);
  1086. IPAddressFamily *fb;
  1087. fb = sk_IPAddressFamily_value(b, j);
  1088. if (fb == NULL)
  1089. return 0;
  1090. if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
  1091. fa->ipAddressChoice->u.addressesOrRanges,
  1092. length_from_afi(v3_addr_get_afi(fb))))
  1093. return 0;
  1094. }
  1095. return 1;
  1096. }
  1097. /*
  1098. * Validation error handling via callback.
  1099. */
  1100. # define validation_err(_err_) \
  1101. do { \
  1102. if (ctx != NULL) { \
  1103. ctx->error = _err_; \
  1104. ctx->error_depth = i; \
  1105. ctx->current_cert = x; \
  1106. ret = ctx->verify_cb(0, ctx); \
  1107. } else { \
  1108. ret = 0; \
  1109. } \
  1110. if (!ret) \
  1111. goto done; \
  1112. } while (0)
  1113. /*
  1114. * Core code for RFC 3779 2.3 path validation.
  1115. *
  1116. * Returns 1 for success, 0 on error.
  1117. *
  1118. * When returning 0, ctx->error MUST be set to an appropriate value other than
  1119. * X509_V_OK.
  1120. */
  1121. static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
  1122. STACK_OF(X509) *chain,
  1123. IPAddrBlocks *ext)
  1124. {
  1125. IPAddrBlocks *child = NULL;
  1126. int i, j, ret = 1;
  1127. X509 *x;
  1128. OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
  1129. OPENSSL_assert(ctx != NULL || ext != NULL);
  1130. OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
  1131. /*
  1132. * Figure out where to start. If we don't have an extension to
  1133. * check, we're done. Otherwise, check canonical form and
  1134. * set up for walking up the chain.
  1135. */
  1136. if (ext != NULL) {
  1137. i = -1;
  1138. x = NULL;
  1139. } else {
  1140. i = 0;
  1141. x = sk_X509_value(chain, i);
  1142. OPENSSL_assert(x != NULL);
  1143. if ((ext = x->rfc3779_addr) == NULL)
  1144. goto done;
  1145. }
  1146. if (!v3_addr_is_canonical(ext))
  1147. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1148. (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
  1149. if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
  1150. X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
  1151. ERR_R_MALLOC_FAILURE);
  1152. ctx->error = X509_V_ERR_OUT_OF_MEM;
  1153. ret = 0;
  1154. goto done;
  1155. }
  1156. /*
  1157. * Now walk up the chain. No cert may list resources that its
  1158. * parent doesn't list.
  1159. */
  1160. for (i++; i < sk_X509_num(chain); i++) {
  1161. x = sk_X509_value(chain, i);
  1162. OPENSSL_assert(x != NULL);
  1163. if (!v3_addr_is_canonical(x->rfc3779_addr))
  1164. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1165. if (x->rfc3779_addr == NULL) {
  1166. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1167. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1168. if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
  1169. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1170. break;
  1171. }
  1172. }
  1173. continue;
  1174. }
  1175. (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
  1176. IPAddressFamily_cmp);
  1177. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1178. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1179. int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
  1180. IPAddressFamily *fp =
  1181. sk_IPAddressFamily_value(x->rfc3779_addr, k);
  1182. if (fp == NULL) {
  1183. if (fc->ipAddressChoice->type ==
  1184. IPAddressChoice_addressesOrRanges) {
  1185. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1186. break;
  1187. }
  1188. continue;
  1189. }
  1190. if (fp->ipAddressChoice->type ==
  1191. IPAddressChoice_addressesOrRanges) {
  1192. if (fc->ipAddressChoice->type == IPAddressChoice_inherit
  1193. || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
  1194. fc->ipAddressChoice->u.addressesOrRanges,
  1195. length_from_afi(v3_addr_get_afi(fc))))
  1196. sk_IPAddressFamily_set(child, j, fp);
  1197. else
  1198. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1199. }
  1200. }
  1201. }
  1202. /*
  1203. * Trust anchor can't inherit.
  1204. */
  1205. OPENSSL_assert(x != NULL);
  1206. if (x->rfc3779_addr != NULL) {
  1207. for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
  1208. IPAddressFamily *fp =
  1209. sk_IPAddressFamily_value(x->rfc3779_addr, j);
  1210. if (fp->ipAddressChoice->type == IPAddressChoice_inherit
  1211. && sk_IPAddressFamily_find(child, fp) >= 0)
  1212. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1213. }
  1214. }
  1215. done:
  1216. sk_IPAddressFamily_free(child);
  1217. return ret;
  1218. }
  1219. # undef validation_err
  1220. /*
  1221. * RFC 3779 2.3 path validation -- called from X509_verify_cert().
  1222. */
  1223. int v3_addr_validate_path(X509_STORE_CTX *ctx)
  1224. {
  1225. return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
  1226. }
  1227. /*
  1228. * RFC 3779 2.3 path validation of an extension.
  1229. * Test whether chain covers extension.
  1230. */
  1231. int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
  1232. IPAddrBlocks *ext, int allow_inheritance)
  1233. {
  1234. if (ext == NULL)
  1235. return 1;
  1236. if (chain == NULL || sk_X509_num(chain) == 0)
  1237. return 0;
  1238. if (!allow_inheritance && v3_addr_inherits(ext))
  1239. return 0;
  1240. return v3_addr_validate_path_internal(NULL, chain, ext);
  1241. }
  1242. #endif /* OPENSSL_NO_RFC3779 */