cwrs.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. /* Copyright (c) 2007-2008 CSIRO
  2. Copyright (c) 2007-2009 Xiph.Org Foundation
  3. Copyright (c) 2007-2009 Timothy B. Terriberry
  4. Written by Timothy B. Terriberry and Jean-Marc Valin */
  5. /*
  6. Redistribution and use in source and binary forms, with or without
  7. modification, are permitted provided that the following conditions
  8. are met:
  9. - Redistributions of source code must retain the above copyright
  10. notice, this list of conditions and the following disclaimer.
  11. - Redistributions in binary form must reproduce the above copyright
  12. notice, this list of conditions and the following disclaimer in the
  13. documentation and/or other materials provided with the distribution.
  14. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
  18. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  19. EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  20. PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  21. PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  22. LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  23. NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  24. SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #ifdef HAVE_CONFIG_H
  27. #include "config.h"
  28. #endif
  29. #include "os_support.h"
  30. #include "cwrs.h"
  31. #include "mathops.h"
  32. #include "arch.h"
  33. #ifdef CUSTOM_MODES
  34. /*Guaranteed to return a conservatively large estimate of the binary logarithm
  35. with frac bits of fractional precision.
  36. Tested for all possible 32-bit inputs with frac=4, where the maximum
  37. overestimation is 0.06254243 bits.*/
  38. int log2_frac(opus_uint32 val, int frac)
  39. {
  40. int l;
  41. l=EC_ILOG(val);
  42. if(val&(val-1)){
  43. /*This is (val>>l-16), but guaranteed to round up, even if adding a bias
  44. before the shift would cause overflow (e.g., for 0xFFFFxxxx).
  45. Doesn't work for val=0, but that case fails the test above.*/
  46. if(l>16)val=((val-1)>>(l-16))+1;
  47. else val<<=16-l;
  48. l=(l-1)<<frac;
  49. /*Note that we always need one iteration, since the rounding up above means
  50. that we might need to adjust the integer part of the logarithm.*/
  51. do{
  52. int b;
  53. b=(int)(val>>16);
  54. l+=b<<frac;
  55. val=(val+b)>>b;
  56. val=(val*val+0x7FFF)>>15;
  57. }
  58. while(frac-->0);
  59. /*If val is not exactly 0x8000, then we have to round up the remainder.*/
  60. return l+(val>0x8000);
  61. }
  62. /*Exact powers of two require no rounding.*/
  63. else return (l-1)<<frac;
  64. }
  65. #endif
  66. /*Although derived separately, the pulse vector coding scheme is equivalent to
  67. a Pyramid Vector Quantizer \cite{Fis86}.
  68. Some additional notes about an early version appear at
  69. https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
  70. and the definitions of some terms have evolved since that was written.
  71. The conversion from a pulse vector to an integer index (encoding) and back
  72. (decoding) is governed by two related functions, V(N,K) and U(N,K).
  73. V(N,K) = the number of combinations, with replacement, of N items, taken K
  74. at a time, when a sign bit is added to each item taken at least once (i.e.,
  75. the number of N-dimensional unit pulse vectors with K pulses).
  76. One way to compute this is via
  77. V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
  78. where choose() is the binomial function.
  79. A table of values for N<10 and K<10 looks like:
  80. V[10][10] = {
  81. {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
  82. {1, 2, 2, 2, 2, 2, 2, 2, 2, 2},
  83. {1, 4, 8, 12, 16, 20, 24, 28, 32, 36},
  84. {1, 6, 18, 38, 66, 102, 146, 198, 258, 326},
  85. {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992},
  86. {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290},
  87. {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436},
  88. {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598},
  89. {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688},
  90. {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146}
  91. };
  92. U(N,K) = the number of such combinations wherein N-1 objects are taken at
  93. most K-1 at a time.
  94. This is given by
  95. U(N,K) = sum(k=0...K-1,V(N-1,k))
  96. = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
  97. The latter expression also makes clear that U(N,K) is half the number of such
  98. combinations wherein the first object is taken at least once.
  99. Although it may not be clear from either of these definitions, U(N,K) is the
  100. natural function to work with when enumerating the pulse vector codebooks,
  101. not V(N,K).
  102. U(N,K) is not well-defined for N=0, but with the extension
  103. U(0,K) = K>0 ? 0 : 1,
  104. the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
  105. U[10][10] = {
  106. {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
  107. {0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
  108. {0, 1, 3, 5, 7, 9, 11, 13, 15, 17},
  109. {0, 1, 5, 13, 25, 41, 61, 85, 113, 145},
  110. {0, 1, 7, 25, 63, 129, 231, 377, 575, 833},
  111. {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649},
  112. {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073},
  113. {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081},
  114. {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545},
  115. {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729}
  116. };
  117. With this extension, V(N,K) may be written in terms of U(N,K):
  118. V(N,K) = U(N,K) + U(N,K+1)
  119. for all N>=0, K>=0.
  120. Thus U(N,K+1) represents the number of combinations where the first element
  121. is positive or zero, and U(N,K) represents the number of combinations where
  122. it is negative.
  123. With a large enough table of U(N,K) values, we could write O(N) encoding
  124. and O(min(N*log(K),N+K)) decoding routines, but such a table would be
  125. prohibitively large for small embedded devices (K may be as large as 32767
  126. for small N, and N may be as large as 200).
  127. Both functions obey the same recurrence relation:
  128. V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
  129. U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
  130. for all N>0, K>0, with different initial conditions at N=0 or K=0.
  131. This allows us to construct a row of one of the tables above given the
  132. previous row or the next row.
  133. Thus we can derive O(NK) encoding and decoding routines with O(K) memory
  134. using only addition and subtraction.
  135. When encoding, we build up from the U(2,K) row and work our way forwards.
  136. When decoding, we need to start at the U(N,K) row and work our way backwards,
  137. which requires a means of computing U(N,K).
  138. U(N,K) may be computed from two previous values with the same N:
  139. U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
  140. for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
  141. previous values with the same K:
  142. U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
  143. for all K>1.
  144. This allows us to construct an arbitrary row of the U(N,K) table by starting
  145. with the first two values, which are constants.
  146. This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
  147. multiplications.
  148. Similar relations can be derived for V(N,K), but are not used here.
  149. For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
  150. polynomial for fixed N.
  151. The first few are
  152. U(1,K) = 1,
  153. U(2,K) = 2*K-1,
  154. U(3,K) = (2*K-2)*K+1,
  155. U(4,K) = (((4*K-6)*K+8)*K-3)/3,
  156. U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
  157. and
  158. V(1,K) = 2,
  159. V(2,K) = 4*K,
  160. V(3,K) = 4*K*K+2,
  161. V(4,K) = 8*(K*K+2)*K/3,
  162. V(5,K) = ((4*K*K+20)*K*K+6)/3,
  163. for all K>0.
  164. This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
  165. small N (and indeed decoding is also O(N) for N<3).
  166. @ARTICLE{Fis86,
  167. author="Thomas R. Fischer",
  168. title="A Pyramid Vector Quantizer",
  169. journal="IEEE Transactions on Information Theory",
  170. volume="IT-32",
  171. number=4,
  172. pages="568--583",
  173. month=Jul,
  174. year=1986
  175. }*/
  176. #if !defined(SMALL_FOOTPRINT)
  177. /*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/
  178. # define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)])
  179. /*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N
  180. with K pulses allocated to it.*/
  181. # define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1))
  182. /*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)).
  183. Thus, the number of entries in row I is the larger of the maximum number of
  184. pulses we will ever allocate for a given N=I (K=128, or however many fit in
  185. 32 bits, whichever is smaller), plus one, and the maximum N for which
  186. K=I-1 pulses fit in 32 bits.
  187. The largest band size in an Opus Custom mode is 208.
  188. Otherwise, we can limit things to the set of N which can be achieved by
  189. splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48,
  190. 44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/
  191. #if defined(CUSTOM_MODES)
  192. static const opus_uint32 CELT_PVQ_U_DATA[1488]={
  193. #else
  194. static const opus_uint32 CELT_PVQ_U_DATA[1272]={
  195. #endif
  196. /*N=0, K=0...176:*/
  197. 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  198. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  199. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  200. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  201. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  202. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  203. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  204. #if defined(CUSTOM_MODES)
  205. /*...208:*/
  206. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  207. 0, 0, 0, 0, 0, 0,
  208. #endif
  209. /*N=1, K=1...176:*/
  210. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  211. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  212. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  213. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  214. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  215. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  216. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  217. #if defined(CUSTOM_MODES)
  218. /*...208:*/
  219. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  220. 1, 1, 1, 1, 1, 1,
  221. #endif
  222. /*N=2, K=2...176:*/
  223. 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
  224. 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
  225. 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
  226. 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
  227. 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
  228. 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
  229. 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
  230. 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
  231. 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
  232. 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
  233. 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
  234. #if defined(CUSTOM_MODES)
  235. /*...208:*/
  236. 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381,
  237. 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411,
  238. 413, 415,
  239. #endif
  240. /*N=3, K=3...176:*/
  241. 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
  242. 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
  243. 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
  244. 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
  245. 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
  246. 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
  247. 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
  248. 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
  249. 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
  250. 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
  251. 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
  252. 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
  253. 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
  254. 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
  255. 57461, 58141, 58825, 59513, 60205, 60901, 61601,
  256. #if defined(CUSTOM_MODES)
  257. /*...208:*/
  258. 62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565,
  259. 70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013,
  260. 78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113,
  261. #endif
  262. /*N=4, K=4...176:*/
  263. 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
  264. 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
  265. 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
  266. 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
  267. 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
  268. 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
  269. 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
  270. 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
  271. 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
  272. 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
  273. 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
  274. 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
  275. 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
  276. 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
  277. 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
  278. 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
  279. 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
  280. 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
  281. 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
  282. 7085049, 7207551,
  283. #if defined(CUSTOM_MODES)
  284. /*...208:*/
  285. 7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783,
  286. 8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967,
  287. 9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199,
  288. 10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177,
  289. 11912575,
  290. #endif
  291. /*N=5, K=5...176:*/
  292. 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
  293. 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
  294. 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
  295. 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
  296. 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
  297. 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
  298. 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
  299. 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
  300. 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
  301. 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
  302. 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
  303. 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
  304. 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
  305. 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
  306. 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
  307. 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
  308. 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
  309. 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
  310. 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
  311. 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
  312. 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
  313. 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
  314. 590359041, 604167209, 618216201, 632508801,
  315. #if defined(CUSTOM_MODES)
  316. /*...208:*/
  317. 647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241,
  318. 755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161,
  319. 878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329,
  320. 1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041,
  321. 1143412929, 1166053121, 1189027881, 1212340489, 1235994241,
  322. #endif
  323. /*N=6, K=6...96:*/
  324. 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
  325. 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
  326. 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
  327. 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
  328. 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
  329. 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
  330. 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
  331. 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
  332. 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
  333. 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
  334. 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
  335. 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
  336. 2011371957, 2120032959,
  337. #if defined(CUSTOM_MODES)
  338. /*...109:*/
  339. 2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U,
  340. 3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U,
  341. 4012305913U,
  342. #endif
  343. /*N=7, K=7...54*/
  344. 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
  345. 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
  346. 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
  347. 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
  348. 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
  349. 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
  350. 1667010073, 1870535785, 2094367717,
  351. #if defined(CUSTOM_MODES)
  352. /*...60:*/
  353. 2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U,
  354. #endif
  355. /*N=8, K=8...37*/
  356. 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
  357. 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
  358. 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
  359. 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
  360. 2229491905U,
  361. #if defined(CUSTOM_MODES)
  362. /*...40:*/
  363. 2691463695U, 3233240945U, 3866006015U,
  364. #endif
  365. /*N=9, K=9...28:*/
  366. 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
  367. 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
  368. 628496897, 872893441, 1196924561, 1621925137, 2173806145U,
  369. #if defined(CUSTOM_MODES)
  370. /*...29:*/
  371. 2883810113U,
  372. #endif
  373. /*N=10, K=10...24:*/
  374. 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
  375. 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U,
  376. 3375210671U,
  377. /*N=11, K=11...19:*/
  378. 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
  379. 948062325, 1616336765,
  380. #if defined(CUSTOM_MODES)
  381. /*...20:*/
  382. 2684641785U,
  383. #endif
  384. /*N=12, K=12...18:*/
  385. 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
  386. 3248227095U,
  387. /*N=13, K=13...16:*/
  388. 251595969, 579168825, 1267854873, 2653649025U,
  389. /*N=14, K=14:*/
  390. 1409933619
  391. };
  392. #if defined(CUSTOM_MODES)
  393. static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
  394. CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415,
  395. CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030,
  396. CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389,
  397. CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455,
  398. CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473
  399. };
  400. #else
  401. static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
  402. CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351,
  403. CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870,
  404. CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178,
  405. CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240,
  406. CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257
  407. };
  408. #endif
  409. #if defined(CUSTOM_MODES)
  410. void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
  411. int k;
  412. /*_maxk==0 => there's nothing to do.*/
  413. celt_assert(_maxk>0);
  414. _bits[0]=0;
  415. for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac);
  416. }
  417. #endif
  418. static opus_uint32 icwrs(int _n,const int *_y){
  419. opus_uint32 i;
  420. int j;
  421. int k;
  422. celt_assert(_n>=2);
  423. j=_n-1;
  424. i=_y[j]<0;
  425. k=abs(_y[j]);
  426. do{
  427. j--;
  428. i+=CELT_PVQ_U(_n-j,k);
  429. k+=abs(_y[j]);
  430. if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1);
  431. }
  432. while(j>0);
  433. return i;
  434. }
  435. void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
  436. celt_assert(_k>0);
  437. ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k));
  438. }
  439. static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){
  440. opus_uint32 p;
  441. int s;
  442. int k0;
  443. opus_int16 val;
  444. opus_val32 yy=0;
  445. celt_assert(_k>0);
  446. celt_assert(_n>1);
  447. while(_n>2){
  448. opus_uint32 q;
  449. /*Lots of pulses case:*/
  450. if(_k>=_n){
  451. const opus_uint32 *row;
  452. row=CELT_PVQ_U_ROW[_n];
  453. /*Are the pulses in this dimension negative?*/
  454. p=row[_k+1];
  455. s=-(_i>=p);
  456. _i-=p&s;
  457. /*Count how many pulses were placed in this dimension.*/
  458. k0=_k;
  459. q=row[_n];
  460. if(q>_i){
  461. celt_assert(p>q);
  462. _k=_n;
  463. do p=CELT_PVQ_U_ROW[--_k][_n];
  464. while(p>_i);
  465. }
  466. else for(p=row[_k];p>_i;p=row[_k])_k--;
  467. _i-=p;
  468. val=(k0-_k+s)^s;
  469. *_y++=val;
  470. yy=MAC16_16(yy,val,val);
  471. }
  472. /*Lots of dimensions case:*/
  473. else{
  474. /*Are there any pulses in this dimension at all?*/
  475. p=CELT_PVQ_U_ROW[_k][_n];
  476. q=CELT_PVQ_U_ROW[_k+1][_n];
  477. if(p<=_i&&_i<q){
  478. _i-=p;
  479. *_y++=0;
  480. }
  481. else{
  482. /*Are the pulses in this dimension negative?*/
  483. s=-(_i>=q);
  484. _i-=q&s;
  485. /*Count how many pulses were placed in this dimension.*/
  486. k0=_k;
  487. do p=CELT_PVQ_U_ROW[--_k][_n];
  488. while(p>_i);
  489. _i-=p;
  490. val=(k0-_k+s)^s;
  491. *_y++=val;
  492. yy=MAC16_16(yy,val,val);
  493. }
  494. }
  495. _n--;
  496. }
  497. /*_n==2*/
  498. p=2*_k+1;
  499. s=-(_i>=p);
  500. _i-=p&s;
  501. k0=_k;
  502. _k=(_i+1)>>1;
  503. if(_k)_i-=2*_k-1;
  504. val=(k0-_k+s)^s;
  505. *_y++=val;
  506. yy=MAC16_16(yy,val,val);
  507. /*_n==1*/
  508. s=-(int)_i;
  509. val=(_k+s)^s;
  510. *_y=val;
  511. yy=MAC16_16(yy,val,val);
  512. return yy;
  513. }
  514. opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
  515. return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y);
  516. }
  517. #else /* SMALL_FOOTPRINT */
  518. /*Computes the next row/column of any recurrence that obeys the relation
  519. u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
  520. _ui0 is the base case for the new row/column.*/
  521. static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){
  522. opus_uint32 ui1;
  523. unsigned j;
  524. /*This do-while will overrun the array if we don't have storage for at least
  525. 2 values.*/
  526. j=1; do {
  527. ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
  528. _ui[j-1]=_ui0;
  529. _ui0=ui1;
  530. } while (++j<_len);
  531. _ui[j-1]=_ui0;
  532. }
  533. /*Computes the previous row/column of any recurrence that obeys the relation
  534. u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
  535. _ui0 is the base case for the new row/column.*/
  536. static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){
  537. opus_uint32 ui1;
  538. unsigned j;
  539. /*This do-while will overrun the array if we don't have storage for at least
  540. 2 values.*/
  541. j=1; do {
  542. ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
  543. _ui[j-1]=_ui0;
  544. _ui0=ui1;
  545. } while (++j<_n);
  546. _ui[j-1]=_ui0;
  547. }
  548. /*Compute V(_n,_k), as well as U(_n,0..._k+1).
  549. _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
  550. static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){
  551. opus_uint32 um2;
  552. unsigned len;
  553. unsigned k;
  554. len=_k+2;
  555. /*We require storage at least 3 values (e.g., _k>0).*/
  556. celt_assert(len>=3);
  557. _u[0]=0;
  558. _u[1]=um2=1;
  559. /*If _n==0, _u[0] should be 1 and the rest should be 0.*/
  560. /*If _n==1, _u[i] should be 1 for i>1.*/
  561. celt_assert(_n>=2);
  562. /*If _k==0, the following do-while loop will overflow the buffer.*/
  563. celt_assert(_k>0);
  564. k=2;
  565. do _u[k]=(k<<1)-1;
  566. while(++k<len);
  567. for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
  568. return _u[_k]+_u[_k+1];
  569. }
  570. /*Returns the _i'th combination of _k elements chosen from a set of size _n
  571. with associated sign bits.
  572. _y: Returns the vector of pulses.
  573. _u: Must contain entries [0..._k+1] of row _n of U() on input.
  574. Its contents will be destructively modified.*/
  575. static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){
  576. int j;
  577. opus_int16 val;
  578. opus_val32 yy=0;
  579. celt_assert(_n>0);
  580. j=0;
  581. do{
  582. opus_uint32 p;
  583. int s;
  584. int yj;
  585. p=_u[_k+1];
  586. s=-(_i>=p);
  587. _i-=p&s;
  588. yj=_k;
  589. p=_u[_k];
  590. while(p>_i)p=_u[--_k];
  591. _i-=p;
  592. yj-=_k;
  593. val=(yj+s)^s;
  594. _y[j]=val;
  595. yy=MAC16_16(yy,val,val);
  596. uprev(_u,_k+2,0);
  597. }
  598. while(++j<_n);
  599. return yy;
  600. }
  601. /*Returns the index of the given combination of K elements chosen from a set
  602. of size 1 with associated sign bits.
  603. _y: The vector of pulses, whose sum of absolute values is K.
  604. _k: Returns K.*/
  605. static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){
  606. *_k=abs(_y[0]);
  607. return _y[0]<0;
  608. }
  609. /*Returns the index of the given combination of K elements chosen from a set
  610. of size _n with associated sign bits.
  611. _y: The vector of pulses, whose sum of absolute values must be _k.
  612. _nc: Returns V(_n,_k).*/
  613. static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y,
  614. opus_uint32 *_u){
  615. opus_uint32 i;
  616. int j;
  617. int k;
  618. /*We can't unroll the first two iterations of the loop unless _n>=2.*/
  619. celt_assert(_n>=2);
  620. _u[0]=0;
  621. for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
  622. i=icwrs1(_y+_n-1,&k);
  623. j=_n-2;
  624. i+=_u[k];
  625. k+=abs(_y[j]);
  626. if(_y[j]<0)i+=_u[k+1];
  627. while(j-->0){
  628. unext(_u,_k+2,0);
  629. i+=_u[k];
  630. k+=abs(_y[j]);
  631. if(_y[j]<0)i+=_u[k+1];
  632. }
  633. *_nc=_u[k]+_u[k+1];
  634. return i;
  635. }
  636. #ifdef CUSTOM_MODES
  637. void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
  638. int k;
  639. /*_maxk==0 => there's nothing to do.*/
  640. celt_assert(_maxk>0);
  641. _bits[0]=0;
  642. if (_n==1)
  643. {
  644. for (k=1;k<=_maxk;k++)
  645. _bits[k] = 1<<_frac;
  646. }
  647. else {
  648. VARDECL(opus_uint32,u);
  649. SAVE_STACK;
  650. ALLOC(u,_maxk+2U,opus_uint32);
  651. ncwrs_urow(_n,_maxk,u);
  652. for(k=1;k<=_maxk;k++)
  653. _bits[k]=log2_frac(u[k]+u[k+1],_frac);
  654. RESTORE_STACK;
  655. }
  656. }
  657. #endif /* CUSTOM_MODES */
  658. void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
  659. opus_uint32 i;
  660. VARDECL(opus_uint32,u);
  661. opus_uint32 nc;
  662. SAVE_STACK;
  663. celt_assert(_k>0);
  664. ALLOC(u,_k+2U,opus_uint32);
  665. i=icwrs(_n,_k,&nc,_y,u);
  666. ec_enc_uint(_enc,i,nc);
  667. RESTORE_STACK;
  668. }
  669. opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
  670. VARDECL(opus_uint32,u);
  671. int ret;
  672. SAVE_STACK;
  673. celt_assert(_k>0);
  674. ALLOC(u,_k+2U,opus_uint32);
  675. ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
  676. RESTORE_STACK;
  677. return ret;
  678. }
  679. #endif /* SMALL_FOOTPRINT */