123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716 |
- /* Copyright (c) 2007-2008 CSIRO
- Copyright (c) 2007-2009 Xiph.Org Foundation
- Copyright (c) 2007-2009 Timothy B. Terriberry
- Written by Timothy B. Terriberry and Jean-Marc Valin */
- /*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "os_support.h"
- #include "cwrs.h"
- #include "mathops.h"
- #include "arch.h"
- #ifdef CUSTOM_MODES
- /*Guaranteed to return a conservatively large estimate of the binary logarithm
- with frac bits of fractional precision.
- Tested for all possible 32-bit inputs with frac=4, where the maximum
- overestimation is 0.06254243 bits.*/
- int log2_frac(opus_uint32 val, int frac)
- {
- int l;
- l=EC_ILOG(val);
- if(val&(val-1)){
- /*This is (val>>l-16), but guaranteed to round up, even if adding a bias
- before the shift would cause overflow (e.g., for 0xFFFFxxxx).
- Doesn't work for val=0, but that case fails the test above.*/
- if(l>16)val=((val-1)>>(l-16))+1;
- else val<<=16-l;
- l=(l-1)<<frac;
- /*Note that we always need one iteration, since the rounding up above means
- that we might need to adjust the integer part of the logarithm.*/
- do{
- int b;
- b=(int)(val>>16);
- l+=b<<frac;
- val=(val+b)>>b;
- val=(val*val+0x7FFF)>>15;
- }
- while(frac-->0);
- /*If val is not exactly 0x8000, then we have to round up the remainder.*/
- return l+(val>0x8000);
- }
- /*Exact powers of two require no rounding.*/
- else return (l-1)<<frac;
- }
- #endif
- /*Although derived separately, the pulse vector coding scheme is equivalent to
- a Pyramid Vector Quantizer \cite{Fis86}.
- Some additional notes about an early version appear at
- https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
- and the definitions of some terms have evolved since that was written.
- The conversion from a pulse vector to an integer index (encoding) and back
- (decoding) is governed by two related functions, V(N,K) and U(N,K).
- V(N,K) = the number of combinations, with replacement, of N items, taken K
- at a time, when a sign bit is added to each item taken at least once (i.e.,
- the number of N-dimensional unit pulse vectors with K pulses).
- One way to compute this is via
- V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
- where choose() is the binomial function.
- A table of values for N<10 and K<10 looks like:
- V[10][10] = {
- {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 2, 2, 2, 2, 2, 2, 2, 2, 2},
- {1, 4, 8, 12, 16, 20, 24, 28, 32, 36},
- {1, 6, 18, 38, 66, 102, 146, 198, 258, 326},
- {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992},
- {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290},
- {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436},
- {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598},
- {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688},
- {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146}
- };
- U(N,K) = the number of such combinations wherein N-1 objects are taken at
- most K-1 at a time.
- This is given by
- U(N,K) = sum(k=0...K-1,V(N-1,k))
- = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
- The latter expression also makes clear that U(N,K) is half the number of such
- combinations wherein the first object is taken at least once.
- Although it may not be clear from either of these definitions, U(N,K) is the
- natural function to work with when enumerating the pulse vector codebooks,
- not V(N,K).
- U(N,K) is not well-defined for N=0, but with the extension
- U(0,K) = K>0 ? 0 : 1,
- the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
- U[10][10] = {
- {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
- {0, 1, 3, 5, 7, 9, 11, 13, 15, 17},
- {0, 1, 5, 13, 25, 41, 61, 85, 113, 145},
- {0, 1, 7, 25, 63, 129, 231, 377, 575, 833},
- {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649},
- {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073},
- {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081},
- {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545},
- {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729}
- };
- With this extension, V(N,K) may be written in terms of U(N,K):
- V(N,K) = U(N,K) + U(N,K+1)
- for all N>=0, K>=0.
- Thus U(N,K+1) represents the number of combinations where the first element
- is positive or zero, and U(N,K) represents the number of combinations where
- it is negative.
- With a large enough table of U(N,K) values, we could write O(N) encoding
- and O(min(N*log(K),N+K)) decoding routines, but such a table would be
- prohibitively large for small embedded devices (K may be as large as 32767
- for small N, and N may be as large as 200).
- Both functions obey the same recurrence relation:
- V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
- U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
- for all N>0, K>0, with different initial conditions at N=0 or K=0.
- This allows us to construct a row of one of the tables above given the
- previous row or the next row.
- Thus we can derive O(NK) encoding and decoding routines with O(K) memory
- using only addition and subtraction.
- When encoding, we build up from the U(2,K) row and work our way forwards.
- When decoding, we need to start at the U(N,K) row and work our way backwards,
- which requires a means of computing U(N,K).
- U(N,K) may be computed from two previous values with the same N:
- U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
- for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
- previous values with the same K:
- U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
- for all K>1.
- This allows us to construct an arbitrary row of the U(N,K) table by starting
- with the first two values, which are constants.
- This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
- multiplications.
- Similar relations can be derived for V(N,K), but are not used here.
- For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
- polynomial for fixed N.
- The first few are
- U(1,K) = 1,
- U(2,K) = 2*K-1,
- U(3,K) = (2*K-2)*K+1,
- U(4,K) = (((4*K-6)*K+8)*K-3)/3,
- U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
- and
- V(1,K) = 2,
- V(2,K) = 4*K,
- V(3,K) = 4*K*K+2,
- V(4,K) = 8*(K*K+2)*K/3,
- V(5,K) = ((4*K*K+20)*K*K+6)/3,
- for all K>0.
- This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
- small N (and indeed decoding is also O(N) for N<3).
- @ARTICLE{Fis86,
- author="Thomas R. Fischer",
- title="A Pyramid Vector Quantizer",
- journal="IEEE Transactions on Information Theory",
- volume="IT-32",
- number=4,
- pages="568--583",
- month=Jul,
- year=1986
- }*/
- #if !defined(SMALL_FOOTPRINT)
- /*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/
- # define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)])
- /*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N
- with K pulses allocated to it.*/
- # define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1))
- /*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)).
- Thus, the number of entries in row I is the larger of the maximum number of
- pulses we will ever allocate for a given N=I (K=128, or however many fit in
- 32 bits, whichever is smaller), plus one, and the maximum N for which
- K=I-1 pulses fit in 32 bits.
- The largest band size in an Opus Custom mode is 208.
- Otherwise, we can limit things to the set of N which can be achieved by
- splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48,
- 44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/
- #if defined(CUSTOM_MODES)
- static const opus_uint32 CELT_PVQ_U_DATA[1488]={
- #else
- static const opus_uint32 CELT_PVQ_U_DATA[1272]={
- #endif
- /*N=0, K=0...176:*/
- 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- #if defined(CUSTOM_MODES)
- /*...208:*/
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0,
- #endif
- /*N=1, K=1...176:*/
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- #if defined(CUSTOM_MODES)
- /*...208:*/
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1,
- #endif
- /*N=2, K=2...176:*/
- 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
- 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
- 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
- 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
- 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
- 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
- 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
- 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
- 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
- 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
- #if defined(CUSTOM_MODES)
- /*...208:*/
- 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381,
- 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411,
- 413, 415,
- #endif
- /*N=3, K=3...176:*/
- 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
- 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
- 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
- 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
- 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
- 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
- 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
- 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
- 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
- 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
- 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
- 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
- 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
- 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
- 57461, 58141, 58825, 59513, 60205, 60901, 61601,
- #if defined(CUSTOM_MODES)
- /*...208:*/
- 62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565,
- 70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013,
- 78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113,
- #endif
- /*N=4, K=4...176:*/
- 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
- 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
- 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
- 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
- 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
- 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
- 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
- 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
- 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
- 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
- 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
- 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
- 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
- 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
- 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
- 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
- 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
- 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
- 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
- 7085049, 7207551,
- #if defined(CUSTOM_MODES)
- /*...208:*/
- 7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783,
- 8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967,
- 9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199,
- 10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177,
- 11912575,
- #endif
- /*N=5, K=5...176:*/
- 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
- 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
- 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
- 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
- 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
- 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
- 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
- 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
- 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
- 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
- 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
- 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
- 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
- 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
- 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
- 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
- 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
- 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
- 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
- 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
- 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
- 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
- 590359041, 604167209, 618216201, 632508801,
- #if defined(CUSTOM_MODES)
- /*...208:*/
- 647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241,
- 755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161,
- 878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329,
- 1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041,
- 1143412929, 1166053121, 1189027881, 1212340489, 1235994241,
- #endif
- /*N=6, K=6...96:*/
- 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
- 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
- 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
- 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
- 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
- 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
- 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
- 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
- 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
- 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
- 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
- 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
- 2011371957, 2120032959,
- #if defined(CUSTOM_MODES)
- /*...109:*/
- 2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U,
- 3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U,
- 4012305913U,
- #endif
- /*N=7, K=7...54*/
- 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
- 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
- 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
- 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
- 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
- 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
- 1667010073, 1870535785, 2094367717,
- #if defined(CUSTOM_MODES)
- /*...60:*/
- 2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U,
- #endif
- /*N=8, K=8...37*/
- 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
- 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
- 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
- 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
- 2229491905U,
- #if defined(CUSTOM_MODES)
- /*...40:*/
- 2691463695U, 3233240945U, 3866006015U,
- #endif
- /*N=9, K=9...28:*/
- 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
- 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
- 628496897, 872893441, 1196924561, 1621925137, 2173806145U,
- #if defined(CUSTOM_MODES)
- /*...29:*/
- 2883810113U,
- #endif
- /*N=10, K=10...24:*/
- 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
- 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U,
- 3375210671U,
- /*N=11, K=11...19:*/
- 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
- 948062325, 1616336765,
- #if defined(CUSTOM_MODES)
- /*...20:*/
- 2684641785U,
- #endif
- /*N=12, K=12...18:*/
- 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
- 3248227095U,
- /*N=13, K=13...16:*/
- 251595969, 579168825, 1267854873, 2653649025U,
- /*N=14, K=14:*/
- 1409933619
- };
- #if defined(CUSTOM_MODES)
- static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
- CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415,
- CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030,
- CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389,
- CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455,
- CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473
- };
- #else
- static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
- CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351,
- CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870,
- CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178,
- CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240,
- CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257
- };
- #endif
- #if defined(CUSTOM_MODES)
- void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
- int k;
- /*_maxk==0 => there's nothing to do.*/
- celt_assert(_maxk>0);
- _bits[0]=0;
- for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac);
- }
- #endif
- static opus_uint32 icwrs(int _n,const int *_y){
- opus_uint32 i;
- int j;
- int k;
- celt_assert(_n>=2);
- j=_n-1;
- i=_y[j]<0;
- k=abs(_y[j]);
- do{
- j--;
- i+=CELT_PVQ_U(_n-j,k);
- k+=abs(_y[j]);
- if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1);
- }
- while(j>0);
- return i;
- }
- void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
- celt_assert(_k>0);
- ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k));
- }
- static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){
- opus_uint32 p;
- int s;
- int k0;
- opus_int16 val;
- opus_val32 yy=0;
- celt_assert(_k>0);
- celt_assert(_n>1);
- while(_n>2){
- opus_uint32 q;
- /*Lots of pulses case:*/
- if(_k>=_n){
- const opus_uint32 *row;
- row=CELT_PVQ_U_ROW[_n];
- /*Are the pulses in this dimension negative?*/
- p=row[_k+1];
- s=-(_i>=p);
- _i-=p&s;
- /*Count how many pulses were placed in this dimension.*/
- k0=_k;
- q=row[_n];
- if(q>_i){
- celt_assert(p>q);
- _k=_n;
- do p=CELT_PVQ_U_ROW[--_k][_n];
- while(p>_i);
- }
- else for(p=row[_k];p>_i;p=row[_k])_k--;
- _i-=p;
- val=(k0-_k+s)^s;
- *_y++=val;
- yy=MAC16_16(yy,val,val);
- }
- /*Lots of dimensions case:*/
- else{
- /*Are there any pulses in this dimension at all?*/
- p=CELT_PVQ_U_ROW[_k][_n];
- q=CELT_PVQ_U_ROW[_k+1][_n];
- if(p<=_i&&_i<q){
- _i-=p;
- *_y++=0;
- }
- else{
- /*Are the pulses in this dimension negative?*/
- s=-(_i>=q);
- _i-=q&s;
- /*Count how many pulses were placed in this dimension.*/
- k0=_k;
- do p=CELT_PVQ_U_ROW[--_k][_n];
- while(p>_i);
- _i-=p;
- val=(k0-_k+s)^s;
- *_y++=val;
- yy=MAC16_16(yy,val,val);
- }
- }
- _n--;
- }
- /*_n==2*/
- p=2*_k+1;
- s=-(_i>=p);
- _i-=p&s;
- k0=_k;
- _k=(_i+1)>>1;
- if(_k)_i-=2*_k-1;
- val=(k0-_k+s)^s;
- *_y++=val;
- yy=MAC16_16(yy,val,val);
- /*_n==1*/
- s=-(int)_i;
- val=(_k+s)^s;
- *_y=val;
- yy=MAC16_16(yy,val,val);
- return yy;
- }
- opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
- return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y);
- }
- #else /* SMALL_FOOTPRINT */
- /*Computes the next row/column of any recurrence that obeys the relation
- u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
- _ui0 is the base case for the new row/column.*/
- static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){
- opus_uint32 ui1;
- unsigned j;
- /*This do-while will overrun the array if we don't have storage for at least
- 2 values.*/
- j=1; do {
- ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
- _ui[j-1]=_ui0;
- _ui0=ui1;
- } while (++j<_len);
- _ui[j-1]=_ui0;
- }
- /*Computes the previous row/column of any recurrence that obeys the relation
- u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
- _ui0 is the base case for the new row/column.*/
- static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){
- opus_uint32 ui1;
- unsigned j;
- /*This do-while will overrun the array if we don't have storage for at least
- 2 values.*/
- j=1; do {
- ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
- _ui[j-1]=_ui0;
- _ui0=ui1;
- } while (++j<_n);
- _ui[j-1]=_ui0;
- }
- /*Compute V(_n,_k), as well as U(_n,0..._k+1).
- _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
- static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){
- opus_uint32 um2;
- unsigned len;
- unsigned k;
- len=_k+2;
- /*We require storage at least 3 values (e.g., _k>0).*/
- celt_assert(len>=3);
- _u[0]=0;
- _u[1]=um2=1;
- /*If _n==0, _u[0] should be 1 and the rest should be 0.*/
- /*If _n==1, _u[i] should be 1 for i>1.*/
- celt_assert(_n>=2);
- /*If _k==0, the following do-while loop will overflow the buffer.*/
- celt_assert(_k>0);
- k=2;
- do _u[k]=(k<<1)-1;
- while(++k<len);
- for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
- return _u[_k]+_u[_k+1];
- }
- /*Returns the _i'th combination of _k elements chosen from a set of size _n
- with associated sign bits.
- _y: Returns the vector of pulses.
- _u: Must contain entries [0..._k+1] of row _n of U() on input.
- Its contents will be destructively modified.*/
- static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){
- int j;
- opus_int16 val;
- opus_val32 yy=0;
- celt_assert(_n>0);
- j=0;
- do{
- opus_uint32 p;
- int s;
- int yj;
- p=_u[_k+1];
- s=-(_i>=p);
- _i-=p&s;
- yj=_k;
- p=_u[_k];
- while(p>_i)p=_u[--_k];
- _i-=p;
- yj-=_k;
- val=(yj+s)^s;
- _y[j]=val;
- yy=MAC16_16(yy,val,val);
- uprev(_u,_k+2,0);
- }
- while(++j<_n);
- return yy;
- }
- /*Returns the index of the given combination of K elements chosen from a set
- of size 1 with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values is K.
- _k: Returns K.*/
- static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){
- *_k=abs(_y[0]);
- return _y[0]<0;
- }
- /*Returns the index of the given combination of K elements chosen from a set
- of size _n with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values must be _k.
- _nc: Returns V(_n,_k).*/
- static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y,
- opus_uint32 *_u){
- opus_uint32 i;
- int j;
- int k;
- /*We can't unroll the first two iterations of the loop unless _n>=2.*/
- celt_assert(_n>=2);
- _u[0]=0;
- for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
- i=icwrs1(_y+_n-1,&k);
- j=_n-2;
- i+=_u[k];
- k+=abs(_y[j]);
- if(_y[j]<0)i+=_u[k+1];
- while(j-->0){
- unext(_u,_k+2,0);
- i+=_u[k];
- k+=abs(_y[j]);
- if(_y[j]<0)i+=_u[k+1];
- }
- *_nc=_u[k]+_u[k+1];
- return i;
- }
- #ifdef CUSTOM_MODES
- void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
- int k;
- /*_maxk==0 => there's nothing to do.*/
- celt_assert(_maxk>0);
- _bits[0]=0;
- if (_n==1)
- {
- for (k=1;k<=_maxk;k++)
- _bits[k] = 1<<_frac;
- }
- else {
- VARDECL(opus_uint32,u);
- SAVE_STACK;
- ALLOC(u,_maxk+2U,opus_uint32);
- ncwrs_urow(_n,_maxk,u);
- for(k=1;k<=_maxk;k++)
- _bits[k]=log2_frac(u[k]+u[k+1],_frac);
- RESTORE_STACK;
- }
- }
- #endif /* CUSTOM_MODES */
- void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
- opus_uint32 i;
- VARDECL(opus_uint32,u);
- opus_uint32 nc;
- SAVE_STACK;
- celt_assert(_k>0);
- ALLOC(u,_k+2U,opus_uint32);
- i=icwrs(_n,_k,&nc,_y,u);
- ec_enc_uint(_enc,i,nc);
- RESTORE_STACK;
- }
- opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
- VARDECL(opus_uint32,u);
- int ret;
- SAVE_STACK;
- celt_assert(_k>0);
- ALLOC(u,_k+2U,opus_uint32);
- ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
- RESTORE_STACK;
- return ret;
- }
- #endif /* SMALL_FOOTPRINT */
|