123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427 |
- /*************************************************************************/
- /* voxel_light_baker.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "voxel_light_baker.h"
- #include "core/os/os.h"
- #include "core/os/threaded_array_processor.h"
- #include <stdlib.h>
- #define FINDMINMAX(x0, x1, x2, min, max) \
- min = max = x0; \
- if (x1 < min) min = x1; \
- if (x1 > max) max = x1; \
- if (x2 < min) min = x2; \
- if (x2 > max) max = x2;
- static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
- int q;
- Vector3 vmin, vmax;
- for (q = 0; q <= 2; q++) {
- if (normal[q] > 0.0f) {
- vmin[q] = -maxbox[q];
- vmax[q] = maxbox[q];
- } else {
- vmin[q] = maxbox[q];
- vmax[q] = -maxbox[q];
- }
- }
- if (normal.dot(vmin) + d > 0.0f) return false;
- if (normal.dot(vmax) + d >= 0.0f) return true;
- return false;
- }
- /*======================== X-tests ========================*/
- #define AXISTEST_X01(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p2 = a * v2.y - b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
- #define AXISTEST_X2(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p1 = a * v1.y - b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
- /*======================== Y-tests ========================*/
- #define AXISTEST_Y02(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p2 = -a * v2.x + b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
- #define AXISTEST_Y1(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p1 = -a * v1.x + b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
- /*======================== Z-tests ========================*/
- #define AXISTEST_Z12(a, b, fa, fb) \
- p1 = a * v1.x - b * v1.y; \
- p2 = a * v2.x - b * v2.y; \
- if (p2 < p1) { \
- min = p2; \
- max = p1; \
- } else { \
- min = p1; \
- max = p2; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) return false;
- #define AXISTEST_Z0(a, b, fa, fb) \
- p0 = a * v0.x - b * v0.y; \
- p1 = a * v1.x - b * v1.y; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) return false;
- static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
- /* use separating axis theorem to test overlap between triangle and box */
- /* need to test for overlap in these directions: */
- /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
- /* we do not even need to test these) */
- /* 2) normal of the triangle */
- /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
- /* this gives 3x3=9 more tests */
- Vector3 v0, v1, v2;
- float min, max, d, p0, p1, p2, rad, fex, fey, fez;
- Vector3 normal, e0, e1, e2;
- /* This is the fastest branch on Sun */
- /* move everything so that the boxcenter is in (0,0,0) */
- v0 = triverts[0] - boxcenter;
- v1 = triverts[1] - boxcenter;
- v2 = triverts[2] - boxcenter;
- /* compute triangle edges */
- e0 = v1 - v0; /* tri edge 0 */
- e1 = v2 - v1; /* tri edge 1 */
- e2 = v0 - v2; /* tri edge 2 */
- /* Bullet 3: */
- /* test the 9 tests first (this was faster) */
- fex = Math::abs(e0.x);
- fey = Math::abs(e0.y);
- fez = Math::abs(e0.z);
- AXISTEST_X01(e0.z, e0.y, fez, fey);
- AXISTEST_Y02(e0.z, e0.x, fez, fex);
- AXISTEST_Z12(e0.y, e0.x, fey, fex);
- fex = Math::abs(e1.x);
- fey = Math::abs(e1.y);
- fez = Math::abs(e1.z);
- AXISTEST_X01(e1.z, e1.y, fez, fey);
- AXISTEST_Y02(e1.z, e1.x, fez, fex);
- AXISTEST_Z0(e1.y, e1.x, fey, fex);
- fex = Math::abs(e2.x);
- fey = Math::abs(e2.y);
- fez = Math::abs(e2.z);
- AXISTEST_X2(e2.z, e2.y, fez, fey);
- AXISTEST_Y1(e2.z, e2.x, fez, fex);
- AXISTEST_Z12(e2.y, e2.x, fey, fex);
- /* Bullet 1: */
- /* first test overlap in the {x,y,z}-directions */
- /* find min, max of the triangle each direction, and test for overlap in */
- /* that direction -- this is equivalent to testing a minimal AABB around */
- /* the triangle against the AABB */
- /* test in X-direction */
- FINDMINMAX(v0.x, v1.x, v2.x, min, max);
- if (min > boxhalfsize.x || max < -boxhalfsize.x) return false;
- /* test in Y-direction */
- FINDMINMAX(v0.y, v1.y, v2.y, min, max);
- if (min > boxhalfsize.y || max < -boxhalfsize.y) return false;
- /* test in Z-direction */
- FINDMINMAX(v0.z, v1.z, v2.z, min, max);
- if (min > boxhalfsize.z || max < -boxhalfsize.z) return false;
- /* Bullet 2: */
- /* test if the box intersects the plane of the triangle */
- /* compute plane equation of triangle: normal*x+d=0 */
- normal = e0.cross(e1);
- d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
- if (!planeBoxOverlap(normal, d, boxhalfsize)) return false;
- return true; /* box and triangle overlaps */
- }
- static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) {
- if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) {
- r_uv = p_uv[0];
- r_normal = p_normal[0];
- return;
- }
- if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) {
- r_uv = p_uv[1];
- r_normal = p_normal[1];
- return;
- }
- if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) {
- r_uv = p_uv[2];
- r_normal = p_normal[2];
- return;
- }
- Vector3 v0 = p_vtx[1] - p_vtx[0];
- Vector3 v1 = p_vtx[2] - p_vtx[0];
- Vector3 v2 = p_pos - p_vtx[0];
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- if (denom == 0) {
- r_uv = p_uv[0];
- r_normal = p_normal[0];
- return;
- }
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
- r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
- r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized();
- }
- void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) {
- if (p_level == cell_subdiv - 1) {
- //plot the face by guessing its albedo and emission value
- //find best axis to map to, for scanning values
- int closest_axis = 0;
- float closest_dot = 0;
- Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 normal = plane.normal;
- for (int i = 0; i < 3; i++) {
- Vector3 axis;
- axis[i] = 1.0;
- float dot = ABS(normal.dot(axis));
- if (i == 0 || dot > closest_dot) {
- closest_axis = i;
- closest_dot = dot;
- }
- }
- Vector3 axis;
- axis[closest_axis] = 1.0;
- Vector3 t1;
- t1[(closest_axis + 1) % 3] = 1.0;
- Vector3 t2;
- t2[(closest_axis + 2) % 3] = 1.0;
- t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
- t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
- Color albedo_accum;
- Color emission_accum;
- Vector3 normal_accum;
- float alpha = 0.0;
- //map to a grid average in the best axis for this face
- for (int i = 0; i < color_scan_cell_width; i++) {
- Vector3 ofs_i = float(i) * t1;
- for (int j = 0; j < color_scan_cell_width; j++) {
- Vector3 ofs_j = float(j) * t2;
- Vector3 from = p_aabb.position + ofs_i + ofs_j;
- Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
- Vector3 half = (to - from) * 0.5;
- //is in this cell?
- if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
- continue; //face does not span this cell
- }
- //go from -size to +size*2 to avoid skipping collisions
- Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
- Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
- if (normal.dot(ray_from - ray_to) < 0) {
- SWAP(ray_from, ray_to);
- }
- Vector3 intersection;
- if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
- if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
- intersection = plane.project(ray_from);
- } else {
- intersection = plane.project(ray_to);
- }
- }
- intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
- Vector2 uv;
- Vector3 lnormal;
- get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal);
- if (lnormal == Vector3()) //just in case normal as nor provided
- lnormal = normal;
- int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int ofs = uv_y * bake_texture_size + uv_x;
- albedo_accum.r += p_material.albedo[ofs].r;
- albedo_accum.g += p_material.albedo[ofs].g;
- albedo_accum.b += p_material.albedo[ofs].b;
- albedo_accum.a += p_material.albedo[ofs].a;
- emission_accum.r += p_material.emission[ofs].r;
- emission_accum.g += p_material.emission[ofs].g;
- emission_accum.b += p_material.emission[ofs].b;
- normal_accum += lnormal;
- alpha += 1.0;
- }
- }
- if (alpha == 0) {
- //could not in any way get texture information.. so use closest point to center
- Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
- Vector3 lnormal;
- Vector2 uv;
- get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal);
- if (lnormal == Vector3()) //just in case normal as nor provided
- lnormal = normal;
- int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int ofs = uv_y * bake_texture_size + uv_x;
- alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
- albedo_accum.r = p_material.albedo[ofs].r * alpha;
- albedo_accum.g = p_material.albedo[ofs].g * alpha;
- albedo_accum.b = p_material.albedo[ofs].b * alpha;
- albedo_accum.a = p_material.albedo[ofs].a * alpha;
- emission_accum.r = p_material.emission[ofs].r * alpha;
- emission_accum.g = p_material.emission[ofs].g * alpha;
- emission_accum.b = p_material.emission[ofs].b * alpha;
- normal_accum = lnormal * alpha;
- } else {
- float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
- alpha *= accdiv;
- albedo_accum.r *= accdiv;
- albedo_accum.g *= accdiv;
- albedo_accum.b *= accdiv;
- albedo_accum.a *= accdiv;
- emission_accum.r *= accdiv;
- emission_accum.g *= accdiv;
- emission_accum.b *= accdiv;
- normal_accum *= accdiv;
- }
- //put this temporarily here, corrected in a later step
- bake_cells.write[p_idx].albedo[0] += albedo_accum.r;
- bake_cells.write[p_idx].albedo[1] += albedo_accum.g;
- bake_cells.write[p_idx].albedo[2] += albedo_accum.b;
- bake_cells.write[p_idx].emission[0] += emission_accum.r;
- bake_cells.write[p_idx].emission[1] += emission_accum.g;
- bake_cells.write[p_idx].emission[2] += emission_accum.b;
- bake_cells.write[p_idx].normal[0] += normal_accum.x;
- bake_cells.write[p_idx].normal[1] += normal_accum.y;
- bake_cells.write[p_idx].normal[2] += normal_accum.z;
- bake_cells.write[p_idx].alpha += alpha;
- } else {
- //go down
- int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
- for (int i = 0; i < 8; i++) {
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
- int nx = p_x;
- int ny = p_y;
- int nz = p_z;
- if (i & 1) {
- aabb.position.x += aabb.size.x;
- nx += half;
- }
- if (i & 2) {
- aabb.position.y += aabb.size.y;
- ny += half;
- }
- if (i & 4) {
- aabb.position.z += aabb.size.z;
- nz += half;
- }
- //make sure to not plot beyond limits
- if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2])
- continue;
- {
- AABB test_aabb = aabb;
- //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
- Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
- if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
- //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
- //does not fit in child, go on
- continue;
- }
- }
- if (bake_cells[p_idx].children[i] == CHILD_EMPTY) {
- //sub cell must be created
- uint32_t child_idx = bake_cells.size();
- bake_cells.write[p_idx].children[i] = child_idx;
- bake_cells.resize(bake_cells.size() + 1);
- bake_cells.write[child_idx].level = p_level + 1;
- }
- _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb);
- }
- }
- }
- Vector<Color> VoxelLightBaker::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
- Vector<Color> ret;
- if (p_image.is_null() || p_image->empty()) {
- ret.resize(bake_texture_size * bake_texture_size);
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- ret.write[i] = p_color_add;
- }
- return ret;
- }
- p_image = p_image->duplicate();
- if (p_image->is_compressed()) {
- p_image->decompress();
- }
- p_image->convert(Image::FORMAT_RGBA8);
- p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
- PoolVector<uint8_t>::Read r = p_image->get_data().read();
- ret.resize(bake_texture_size * bake_texture_size);
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- Color c;
- c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
- c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
- c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
- c.a = r[i * 4 + 3] / 255.0;
- ret.write[i] = c;
- }
- return ret;
- }
- VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref<Material> p_material) {
- //this way of obtaining materials is inaccurate and also does not support some compressed formats very well
- Ref<SpatialMaterial> mat = p_material;
- Ref<Material> material = mat; //hack for now
- if (material_cache.has(material)) {
- return material_cache[material];
- }
- MaterialCache mc;
- if (mat.is_valid()) {
- Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO);
- Ref<Image> img_albedo;
- if (albedo_tex.is_valid()) {
- img_albedo = albedo_tex->get_data();
- mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
- } else {
- mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
- }
- Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION);
- Color emission_col = mat->get_emission();
- float emission_energy = mat->get_emission_energy();
- Ref<Image> img_emission;
- if (emission_tex.is_valid()) {
- img_emission = emission_tex->get_data();
- }
- if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) {
- mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
- } else {
- mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
- }
- } else {
- Ref<Image> empty;
- mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
- mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
- }
- material_cache[p_material] = mc;
- return mc;
- }
- void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
- for (int i = 0; i < p_mesh->get_surface_count(); i++) {
- if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
- continue; //only triangles
- Ref<Material> src_material;
- if (p_override_material.is_valid()) {
- src_material = p_override_material;
- } else if (i < p_materials.size() && p_materials[i].is_valid()) {
- src_material = p_materials[i];
- } else {
- src_material = p_mesh->surface_get_material(i);
- }
- MaterialCache material = _get_material_cache(src_material);
- Array a = p_mesh->surface_get_arrays(i);
- PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
- PoolVector<Vector3>::Read vr = vertices.read();
- PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
- PoolVector<Vector2>::Read uvr;
- PoolVector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
- PoolVector<Vector3>::Read nr;
- PoolVector<int> index = a[Mesh::ARRAY_INDEX];
- bool read_uv = false;
- bool read_normals = false;
- if (uv.size()) {
- uvr = uv.read();
- read_uv = true;
- }
- if (normals.size()) {
- read_normals = true;
- nr = normals.read();
- }
- if (index.size()) {
- int facecount = index.size() / 3;
- PoolVector<int>::Read ir = index.read();
- for (int j = 0; j < facecount; j++) {
- Vector3 vtxs[3];
- Vector2 uvs[3];
- Vector3 normal[3];
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
- }
- if (read_uv) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[ir[j * 3 + k]];
- }
- }
- if (read_normals) {
- for (int k = 0; k < 3; k++) {
- normal[k] = nr[ir[j * 3 + k]];
- }
- }
- //test against original bounds
- if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
- continue;
- //plot
- _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
- }
- } else {
- int facecount = vertices.size() / 3;
- for (int j = 0; j < facecount; j++) {
- Vector3 vtxs[3];
- Vector2 uvs[3];
- Vector3 normal[3];
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[j * 3 + k]);
- }
- if (read_uv) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[j * 3 + k];
- }
- }
- if (read_normals) {
- for (int k = 0; k < 3; k++) {
- normal[k] = nr[j * 3 + k];
- }
- }
- //test against original bounds
- if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
- continue;
- //plot face
- _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
- }
- }
- }
- max_original_cells = bake_cells.size();
- }
- void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) {
- bake_light.write[p_idx].x = p_x;
- bake_light.write[p_idx].y = p_y;
- bake_light.write[p_idx].z = p_z;
- if (p_level == cell_subdiv - 1) {
- bake_light.write[p_idx].next_leaf = first_leaf;
- first_leaf = p_idx;
- } else {
- //go down
- int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
- for (int i = 0; i < 8; i++) {
- uint32_t child = bake_cells[p_idx].children[i];
- if (child == CHILD_EMPTY)
- continue;
- int nx = p_x;
- int ny = p_y;
- int nz = p_z;
- if (i & 1)
- nx += half;
- if (i & 2)
- ny += half;
- if (i & 4)
- nz += half;
- _init_light_plot(child, p_level + 1, nx, ny, nz, p_idx);
- }
- }
- }
- void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, BakeMode p_bake_mode, float p_propagation, float p_energy) {
- _check_init_light();
- propagation = p_propagation;
- bake_quality = p_quality;
- bake_mode = p_bake_mode;
- energy = p_energy;
- }
- void VoxelLightBaker::_check_init_light() {
- if (bake_light.size() == 0) {
- direct_lights_baked = false;
- leaf_voxel_count = 0;
- _fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting.
- bake_light.resize(bake_cells.size());
- print_line("bake light size: " + itos(bake_light.size()));
- //zeromem(bake_light.ptrw(), bake_light.size() * sizeof(Light));
- first_leaf = -1;
- _init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY);
- }
- }
- static float _get_normal_advance(const Vector3 &p_normal) {
- Vector3 normal = p_normal;
- Vector3 unorm = normal.abs();
- if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
- // x code
- unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0);
- } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
- // y code
- unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0);
- } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
- // z code
- unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0);
- } else {
- // oh-no we messed up code
- // has to be
- unorm = Vector3(1.0, 0.0, 0.0);
- }
- return 1.0 / normal.dot(unorm);
- }
- static const Vector3 aniso_normal[6] = {
- Vector3(-1, 0, 0),
- Vector3(1, 0, 0),
- Vector3(0, -1, 0),
- Vector3(0, 1, 0),
- Vector3(0, 0, -1),
- Vector3(0, 0, 1)
- };
- uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) {
- uint32_t cell = 0;
- int ofs_x = 0;
- int ofs_y = 0;
- int ofs_z = 0;
- int size = 1 << (cell_subdiv - 1);
- int half = size / 2;
- if (x < 0 || x >= size)
- return -1;
- if (y < 0 || y >= size)
- return -1;
- if (z < 0 || z >= size)
- return -1;
- for (int i = 0; i < cell_subdiv - 1; i++) {
- const Cell *bc = &cells[cell];
- int child = 0;
- if (x >= ofs_x + half) {
- child |= 1;
- ofs_x += half;
- }
- if (y >= ofs_y + half) {
- child |= 2;
- ofs_y += half;
- }
- if (z >= ofs_z + half) {
- child |= 4;
- ofs_z += half;
- }
- cell = bc->children[child];
- if (cell == CHILD_EMPTY)
- return CHILD_EMPTY;
- half >>= 1;
- }
- return cell;
- }
- void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) {
- _check_init_light();
- float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1;
- if (p_direct)
- direct_lights_baked = true;
- Vector3 light_axis = p_direction;
- Plane clip[3];
- int clip_planes = 0;
- Light *light_data = bake_light.ptrw();
- const Cell *cells = bake_cells.ptr();
- for (int i = 0; i < 3; i++) {
- if (ABS(light_axis[i]) < CMP_EPSILON)
- continue;
- clip[clip_planes].normal[i] = 1.0;
- if (light_axis[i] < 0) {
- clip[clip_planes].d = axis_cell_size[i] + 1;
- } else {
- clip[clip_planes].d -= 1.0;
- }
- clip_planes++;
- }
- float distance_adv = _get_normal_advance(light_axis);
- int success_count = 0;
- Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
- int idx = first_leaf;
- while (idx >= 0) {
- Light *light = &light_data[idx];
- Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
- to += -light_axis.sign() * 0.47; //make it more likely to receive a ray
- Vector3 from = to - max_len * light_axis;
- for (int j = 0; j < clip_planes; j++) {
- clip[j].intersects_segment(from, to, &from);
- }
- float distance = (to - from).length();
- distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always
- from = to - light_axis * distance;
- uint32_t result = 0xFFFFFFFF;
- while (distance > -distance_adv) { //use this to avoid precision errors
- result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
- if (result != 0xFFFFFFFF) {
- break;
- }
- from += light_axis * distance_adv;
- distance -= distance_adv;
- }
- if (result == idx) {
- //cell hit itself! hooray!
- Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
- if (normal == Vector3()) {
- for (int i = 0; i < 6; i++) {
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0];
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1];
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2];
- }
- } else {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-normal));
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s;
- }
- }
- if (p_direct) {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
- light->direct_accum[i][0] += light_energy.x * s;
- light->direct_accum[i][1] += light_energy.y * s;
- light->direct_accum[i][2] += light_energy.z * s;
- }
- }
- success_count++;
- }
- idx = light_data[idx].next_leaf;
- }
- }
- void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) {
- _check_init_light();
- if (p_direct)
- direct_lights_baked = true;
- Plane clip[3];
- int clip_planes = 0;
- // uint64_t us = OS::get_singleton()->get_ticks_usec();
- Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
- //Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized();
- float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
- Light *light_data = bake_light.ptrw();
- const Cell *cells = bake_cells.ptr();
- Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
- int idx = first_leaf;
- while (idx >= 0) {
- Light *light = &light_data[idx];
- Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
- to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
- Vector3 light_axis = (to - light_pos).normalized();
- float distance_adv = _get_normal_advance(light_axis);
- Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
- if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
- idx = light_data[idx].next_leaf;
- continue;
- }
- float att = 1.0;
- {
- float d = light_pos.distance_to(to);
- if (d + distance_adv > local_radius) {
- idx = light_data[idx].next_leaf;
- continue; // too far away
- }
- float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
- att *= powf(1.0 - dt, p_attenutation);
- }
- clip_planes = 0;
- for (int c = 0; c < 3; c++) {
- if (ABS(light_axis[c]) < CMP_EPSILON)
- continue;
- clip[clip_planes].normal[c] = 1.0;
- if (light_axis[c] < 0) {
- clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
- } else {
- clip[clip_planes].d -= 1.0;
- }
- clip_planes++;
- }
- Vector3 from = light_pos;
- for (int j = 0; j < clip_planes; j++) {
- clip[j].intersects_segment(from, to, &from);
- }
- float distance = (to - from).length();
- distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
- from = to - light_axis * distance;
- to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
- uint32_t result = 0xFFFFFFFF;
- while (distance > -distance_adv) { //use this to avoid precision errors
- result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
- if (result != 0xFFFFFFFF) {
- break;
- }
- from += light_axis * distance_adv;
- distance -= distance_adv;
- }
- if (result == idx) {
- //cell hit itself! hooray!
- if (normal == Vector3()) {
- for (int i = 0; i < 6; i++) {
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
- }
- } else {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-normal));
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
- }
- }
- if (p_direct) {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
- light->direct_accum[i][0] += light_energy.x * s * att;
- light->direct_accum[i][1] += light_energy.y * s * att;
- light->direct_accum[i][2] += light_energy.z * s * att;
- }
- }
- }
- idx = light_data[idx].next_leaf;
- }
- }
- void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) {
- _check_init_light();
- if (p_direct)
- direct_lights_baked = true;
- Plane clip[3];
- int clip_planes = 0;
- // uint64_t us = OS::get_singleton()->get_ticks_usec();
- Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
- Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized();
- float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
- Light *light_data = bake_light.ptrw();
- const Cell *cells = bake_cells.ptr();
- Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
- int idx = first_leaf;
- while (idx >= 0) {
- Light *light = &light_data[idx];
- Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
- Vector3 light_axis = (to - light_pos).normalized();
- float distance_adv = _get_normal_advance(light_axis);
- Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
- if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
- idx = light_data[idx].next_leaf;
- continue;
- }
- float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis)));
- if (angle > p_spot_angle) {
- idx = light_data[idx].next_leaf;
- continue; // too far away
- }
- float att = Math::pow(1.0f - angle / p_spot_angle, p_spot_attenuation);
- {
- float d = light_pos.distance_to(to);
- if (d + distance_adv > local_radius) {
- idx = light_data[idx].next_leaf;
- continue; // too far away
- }
- float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
- att *= powf(1.0 - dt, p_attenutation);
- }
- clip_planes = 0;
- for (int c = 0; c < 3; c++) {
- if (ABS(light_axis[c]) < CMP_EPSILON)
- continue;
- clip[clip_planes].normal[c] = 1.0;
- if (light_axis[c] < 0) {
- clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
- } else {
- clip[clip_planes].d -= 1.0;
- }
- clip_planes++;
- }
- Vector3 from = light_pos;
- for (int j = 0; j < clip_planes; j++) {
- clip[j].intersects_segment(from, to, &from);
- }
- float distance = (to - from).length();
- distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
- from = to - light_axis * distance;
- uint32_t result = 0xFFFFFFFF;
- while (distance > -distance_adv) { //use this to avoid precision errors
- result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
- if (result != 0xFFFFFFFF) {
- break;
- }
- from += light_axis * distance_adv;
- distance -= distance_adv;
- }
- if (result == idx) {
- //cell hit itself! hooray!
- if (normal == Vector3()) {
- for (int i = 0; i < 6; i++) {
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
- }
- } else {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-normal));
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
- }
- }
- if (p_direct) {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
- light->direct_accum[i][0] += light_energy.x * s * att;
- light->direct_accum[i][1] += light_energy.y * s * att;
- light->direct_accum[i][2] += light_energy.z * s * att;
- }
- }
- }
- idx = light_data[idx].next_leaf;
- }
- }
- void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) {
- if (p_level == cell_subdiv - 1) {
- leaf_voxel_count++;
- float alpha = bake_cells[p_idx].alpha;
- bake_cells.write[p_idx].albedo[0] /= alpha;
- bake_cells.write[p_idx].albedo[1] /= alpha;
- bake_cells.write[p_idx].albedo[2] /= alpha;
- //transfer emission to light
- bake_cells.write[p_idx].emission[0] /= alpha;
- bake_cells.write[p_idx].emission[1] /= alpha;
- bake_cells.write[p_idx].emission[2] /= alpha;
- bake_cells.write[p_idx].normal[0] /= alpha;
- bake_cells.write[p_idx].normal[1] /= alpha;
- bake_cells.write[p_idx].normal[2] /= alpha;
- Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]);
- if (n.length() < 0.01) {
- //too much fight over normal, zero it
- bake_cells.write[p_idx].normal[0] = 0;
- bake_cells.write[p_idx].normal[1] = 0;
- bake_cells.write[p_idx].normal[2] = 0;
- } else {
- n.normalize();
- bake_cells.write[p_idx].normal[0] = n.x;
- bake_cells.write[p_idx].normal[1] = n.y;
- bake_cells.write[p_idx].normal[2] = n.z;
- }
- bake_cells.write[p_idx].alpha = 1.0;
- /*if (bake_light.size()) {
- for(int i=0;i<6;i++) {
- }
- }*/
- } else {
- //go down
- bake_cells.write[p_idx].emission[0] = 0;
- bake_cells.write[p_idx].emission[1] = 0;
- bake_cells.write[p_idx].emission[2] = 0;
- bake_cells.write[p_idx].normal[0] = 0;
- bake_cells.write[p_idx].normal[1] = 0;
- bake_cells.write[p_idx].normal[2] = 0;
- bake_cells.write[p_idx].albedo[0] = 0;
- bake_cells.write[p_idx].albedo[1] = 0;
- bake_cells.write[p_idx].albedo[2] = 0;
- if (bake_light.size()) {
- for (int j = 0; j < 6; j++) {
- bake_light.write[p_idx].accum[j][0] = 0;
- bake_light.write[p_idx].accum[j][1] = 0;
- bake_light.write[p_idx].accum[j][2] = 0;
- }
- }
- float alpha_average = 0;
- int children_found = 0;
- for (int i = 0; i < 8; i++) {
- uint32_t child = bake_cells[p_idx].children[i];
- if (child == CHILD_EMPTY)
- continue;
- _fixup_plot(child, p_level + 1);
- alpha_average += bake_cells[child].alpha;
- if (bake_light.size() > 0) {
- for (int j = 0; j < 6; j++) {
- bake_light.write[p_idx].accum[j][0] += bake_light[child].accum[j][0];
- bake_light.write[p_idx].accum[j][1] += bake_light[child].accum[j][1];
- bake_light.write[p_idx].accum[j][2] += bake_light[child].accum[j][2];
- }
- bake_cells.write[p_idx].emission[0] += bake_cells[child].emission[0];
- bake_cells.write[p_idx].emission[1] += bake_cells[child].emission[1];
- bake_cells.write[p_idx].emission[2] += bake_cells[child].emission[2];
- }
- children_found++;
- }
- bake_cells.write[p_idx].alpha = alpha_average / 8.0;
- if (bake_light.size() && children_found) {
- float divisor = Math::lerp(8, children_found, propagation);
- for (int j = 0; j < 6; j++) {
- bake_light.write[p_idx].accum[j][0] /= divisor;
- bake_light.write[p_idx].accum[j][1] /= divisor;
- bake_light.write[p_idx].accum[j][2] /= divisor;
- }
- bake_cells.write[p_idx].emission[0] /= divisor;
- bake_cells.write[p_idx].emission[1] /= divisor;
- bake_cells.write[p_idx].emission[2] /= divisor;
- }
- }
- }
- //make sure any cell (save for the root) has an empty cell previous to it, so it can be interpolated into
- void VoxelLightBaker::_plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height) {
- int x[3];
- int y[3];
- for (int j = 0; j < 3; j++) {
- x[j] = vertices[j].x * width;
- y[j] = vertices[j].y * height;
- //x[j] = CLAMP(x[j], 0, bt.width - 1);
- //y[j] = CLAMP(y[j], 0, bt.height - 1);
- }
- // sort the points vertically
- if (y[1] > y[2]) {
- SWAP(x[1], x[2]);
- SWAP(y[1], y[2]);
- SWAP(positions[1], positions[2]);
- SWAP(normals[1], normals[2]);
- }
- if (y[0] > y[1]) {
- SWAP(x[0], x[1]);
- SWAP(y[0], y[1]);
- SWAP(positions[0], positions[1]);
- SWAP(normals[0], normals[1]);
- }
- if (y[1] > y[2]) {
- SWAP(x[1], x[2]);
- SWAP(y[1], y[2]);
- SWAP(positions[1], positions[2]);
- SWAP(normals[1], normals[2]);
- }
- double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1);
- double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1);
- double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1);
- double xf = x[0];
- double xt = x[0] + dx_upper; // if y[0] == y[1], special case
- for (int yi = y[0]; yi <= (y[2] > height - 1 ? height - 1 : y[2]); yi++) {
- if (yi >= 0) {
- for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < width ? xt : width - 1); xi++) {
- //pixels[int(x + y * width)] = color;
- Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]);
- Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]);
- //vertices[2] - vertices[0];
- Vector2 v2 = Vector2(xi - x[0], yi - y[0]);
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- Vector3 pos;
- Vector3 normal;
- if (denom == 0) {
- pos = positions[0];
- normal = normals[0];
- } else {
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
- pos = positions[0] * u + positions[1] * v + positions[2] * w;
- normal = normals[0] * u + normals[1] * v + normals[2] * w;
- }
- int ofs = yi * width + xi;
- pixels[ofs].normal = normal;
- pixels[ofs].pos = pos;
- }
- for (int xi = (xf < width ? int(xf) : width - 1); xi >= (xt > 0 ? xt : 0); xi--) {
- //pixels[int(x + y * width)] = color;
- Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]);
- Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]);
- //vertices[2] - vertices[0];
- Vector2 v2 = Vector2(xi - x[0], yi - y[0]);
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- Vector3 pos;
- Vector3 normal;
- if (denom == 0) {
- pos = positions[0];
- normal = normals[0];
- } else {
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
- pos = positions[0] * u + positions[1] * v + positions[2] * w;
- normal = normals[0] * u + normals[1] * v + normals[2] * w;
- }
- int ofs = yi * width + xi;
- pixels[ofs].normal = normal;
- pixels[ofs].pos = pos;
- }
- }
- xf += dx_far;
- if (yi < y[1])
- xt += dx_upper;
- else
- xt += dx_low;
- }
- }
- void VoxelLightBaker::_sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha) {
- int size = 1 << (cell_subdiv - 1);
- int clamp_v = size - 1;
- //first of all, clamp
- Vector3 pos;
- pos.x = CLAMP(p_posf.x, 0, clamp_v);
- pos.y = CLAMP(p_posf.y, 0, clamp_v);
- pos.z = CLAMP(p_posf.z, 0, clamp_v);
- float level = (cell_subdiv - 1) - p_level;
- int target_level;
- float level_filter;
- if (level <= 0.0) {
- level_filter = 0;
- target_level = 0;
- } else {
- target_level = Math::ceil(level);
- level_filter = target_level - level;
- }
- const Cell *cells = bake_cells.ptr();
- const Light *light = bake_light.ptr();
- Vector3 color[2][8];
- float alpha[2][8];
- zeromem(alpha, sizeof(float) * 2 * 8);
- //find cell at given level first
- for (int c = 0; c < 2; c++) {
- int current_level = MAX(0, target_level - c);
- int level_cell_size = (1 << (cell_subdiv - 1)) >> current_level;
- for (int n = 0; n < 8; n++) {
- int x = int(pos.x);
- int y = int(pos.y);
- int z = int(pos.z);
- if (n & 1)
- x += level_cell_size;
- if (n & 2)
- y += level_cell_size;
- if (n & 4)
- z += level_cell_size;
- int ofs_x = 0;
- int ofs_y = 0;
- int ofs_z = 0;
- x = CLAMP(x, 0, clamp_v);
- y = CLAMP(y, 0, clamp_v);
- z = CLAMP(z, 0, clamp_v);
- int half = size / 2;
- uint32_t cell = 0;
- for (int i = 0; i < current_level; i++) {
- const Cell *bc = &cells[cell];
- int child = 0;
- if (x >= ofs_x + half) {
- child |= 1;
- ofs_x += half;
- }
- if (y >= ofs_y + half) {
- child |= 2;
- ofs_y += half;
- }
- if (z >= ofs_z + half) {
- child |= 4;
- ofs_z += half;
- }
- cell = bc->children[child];
- if (cell == CHILD_EMPTY)
- break;
- half >>= 1;
- }
- if (cell == CHILD_EMPTY) {
- alpha[c][n] = 0;
- } else {
- alpha[c][n] = cells[cell].alpha;
- for (int i = 0; i < 6; i++) {
- //anisotropic read light
- float amount = p_direction.dot(aniso_normal[i]);
- if (amount < 0)
- amount = 0;
- color[c][n].x += light[cell].accum[i][0] * amount;
- color[c][n].y += light[cell].accum[i][1] * amount;
- color[c][n].z += light[cell].accum[i][2] * amount;
- }
- color[c][n].x += cells[cell].emission[0];
- color[c][n].y += cells[cell].emission[1];
- color[c][n].z += cells[cell].emission[2];
- }
- }
- }
- float target_level_size = size >> target_level;
- Vector3 pos_fract[2];
- pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size;
- pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size;
- pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size;
- target_level_size = size >> MAX(0, target_level - 1);
- pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size;
- pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size;
- pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size;
- float alpha_interp[2];
- Vector3 color_interp[2];
- for (int i = 0; i < 2; i++) {
- Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x);
- Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x);
- Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y);
- Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x);
- Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x);
- Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y);
- color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z);
- float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x);
- float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x);
- float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y);
- float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x);
- float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x);
- float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y);
- alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z);
- }
- r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter);
- r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter);
- }
- Vector3 VoxelLightBaker::_voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture) {
- float bias = 2.5;
- float max_distance = (Vector3(1, 1, 1) * (1 << (cell_subdiv - 1))).length();
- float dist = bias;
- float alpha = 0.0;
- Vector3 color;
- Vector3 scolor;
- float salpha;
- while (dist < max_distance && alpha < 0.95) {
- float diameter = MAX(1.0, 2.0 * p_aperture * dist);
- _sample_baked_octree_filtered_and_anisotropic(p_pos + dist * p_normal, p_normal, log2(diameter), scolor, salpha);
- float a = (1.0 - alpha);
- color += scolor * a;
- alpha += a * salpha;
- dist += diameter * 0.5;
- }
- /*if (blend_ambient) {
- color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
- }*/
- return color;
- }
- Vector3 VoxelLightBaker::_compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) {
- //find arbitrary tangent and bitangent, then build a matrix
- Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0);
- Vector3 tangent = v0.cross(p_normal).normalized();
- Vector3 bitangent = tangent.cross(p_normal).normalized();
- Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed();
- const Vector3 *cone_dirs = NULL;
- const float *cone_weights = NULL;
- int cone_dir_count = 0;
- float cone_aperture = 0;
- switch (bake_quality) {
- case BAKE_QUALITY_LOW: {
- //default quality
- static const Vector3 dirs[4] = {
- Vector3(0.707107, 0, 0.707107),
- Vector3(0, 0.707107, 0.707107),
- Vector3(-0.707107, 0, 0.707107),
- Vector3(0, -0.707107, 0.707107)
- };
- static const float weights[4] = { 0.25, 0.25, 0.25, 0.25 };
- cone_dirs = dirs;
- cone_dir_count = 4;
- cone_aperture = 1.0; // tan(angle) 90 degrees
- cone_weights = weights;
- } break;
- case BAKE_QUALITY_MEDIUM: {
- //default quality
- static const Vector3 dirs[6] = {
- Vector3(0, 0, 1),
- Vector3(0.866025, 0, 0.5),
- Vector3(0.267617, 0.823639, 0.5),
- Vector3(-0.700629, 0.509037, 0.5),
- Vector3(-0.700629, -0.509037, 0.5),
- Vector3(0.267617, -0.823639, 0.5)
- };
- static const float weights[6] = { 0.25f, 0.15f, 0.15f, 0.15f, 0.15f, 0.15f };
- //
- cone_dirs = dirs;
- cone_dir_count = 6;
- cone_aperture = 0.577; // tan(angle) 60 degrees
- cone_weights = weights;
- } break;
- case BAKE_QUALITY_HIGH: {
- //high qualily
- static const Vector3 dirs[10] = {
- Vector3(0.8781648411741658, 0.0, 0.478358141694643),
- Vector3(0.5369754325592234, 0.6794204427701518, 0.5000452447267606),
- Vector3(-0.19849436573466497, 0.8429904390140635, 0.49996710542041645),
- Vector3(-0.7856196499811189, 0.3639120321329737, 0.5003696617825604),
- Vector3(-0.7856196499811189, -0.3639120321329737, 0.5003696617825604),
- Vector3(-0.19849436573466497, -0.8429904390140635, 0.49996710542041645),
- Vector3(0.5369754325592234, -0.6794204427701518, 0.5000452447267606),
- Vector3(-0.4451656858129485, 0.0, 0.8954482185892644),
- Vector3(0.19124006749743122, 0.39355745585016605, 0.8991883926788214),
- Vector3(0.19124006749743122, -0.39355745585016605, 0.8991883926788214),
- };
- static const float weights[10] = { 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.133333f, 0.133333f, 0.13333f };
- cone_dirs = dirs;
- cone_dir_count = 10;
- cone_aperture = 0.404; // tan(angle) 45 degrees
- cone_weights = weights;
- } break;
- }
- Vector3 accum;
- for (int i = 0; i < cone_dir_count; i++) {
- Vector3 dir = normal_xform.xform(cone_dirs[i]).normalized(); //normal may not completely correct when transformed to cell
- accum += _voxel_cone_trace(p_pos, dir, cone_aperture) * cone_weights[i];
- }
- return accum;
- }
- _ALWAYS_INLINE_ uint32_t xorshift32(uint32_t *state) {
- /* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */
- uint32_t x = *state;
- x ^= x << 13;
- x ^= x >> 17;
- x ^= x << 5;
- *state = x;
- return x;
- }
- Vector3 VoxelLightBaker::_compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) {
- int samples_per_quality[3] = { 48, 128, 512 };
- int samples = samples_per_quality[bake_quality];
- //create a basis in Z
- Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0);
- Vector3 tangent = v0.cross(p_normal).normalized();
- Vector3 bitangent = tangent.cross(p_normal).normalized();
- Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed();
- float bias = 1.5;
- int max_level = cell_subdiv - 1;
- int size = 1 << max_level;
- Vector3 accum;
- float spread = Math::deg2rad(80.0);
- const Light *light = bake_light.ptr();
- const Cell *cells = bake_cells.ptr();
- uint32_t local_rng_state = rand(); //needs to be fixed again
- for (int i = 0; i < samples; i++) {
- float random_angle1 = (((xorshift32(&local_rng_state) % 65535) / 65535.0) * 2.0 - 1.0) * spread;
- Vector3 axis(0, sin(random_angle1), cos(random_angle1));
- float random_angle2 = ((xorshift32(&local_rng_state) % 65535) / 65535.0) * Math_PI * 2.0;
- Basis rot(Vector3(0, 0, 1), random_angle2);
- axis = rot.xform(axis);
- Vector3 direction = normal_xform.xform(axis).normalized();
- Vector3 advance = direction * _get_normal_advance(direction);
- Vector3 pos = p_pos /*+ Vector3(0.5, 0.5, 0.5)*/ + advance * bias;
- uint32_t cell = CHILD_EMPTY;
- while (cell == CHILD_EMPTY) {
- int x = int(pos.x);
- int y = int(pos.y);
- int z = int(pos.z);
- int ofs_x = 0;
- int ofs_y = 0;
- int ofs_z = 0;
- int half = size / 2;
- if (x < 0 || x >= size)
- break;
- if (y < 0 || y >= size)
- break;
- if (z < 0 || z >= size)
- break;
- //int level_limit = max_level;
- cell = 0; //start from root
- for (int i = 0; i < max_level; i++) {
- const Cell *bc = &cells[cell];
- int child = 0;
- if (x >= ofs_x + half) {
- child |= 1;
- ofs_x += half;
- }
- if (y >= ofs_y + half) {
- child |= 2;
- ofs_y += half;
- }
- if (z >= ofs_z + half) {
- child |= 4;
- ofs_z += half;
- }
- cell = bc->children[child];
- if (unlikely(cell == CHILD_EMPTY))
- break;
- half >>= 1;
- }
- pos += advance;
- }
- if (unlikely(cell != CHILD_EMPTY)) {
- for (int i = 0; i < 6; i++) {
- //anisotropic read light
- float amount = direction.dot(aniso_normal[i]);
- if (amount <= 0)
- continue;
- accum.x += light[cell].accum[i][0] * amount;
- accum.y += light[cell].accum[i][1] * amount;
- accum.z += light[cell].accum[i][2] * amount;
- }
- accum.x += cells[cell].emission[0];
- accum.y += cells[cell].emission[1];
- accum.z += cells[cell].emission[2];
- }
- }
- // Make sure we don't reset this thread's RNG state
- return accum / samples;
- }
- void VoxelLightBaker::_lightmap_bake_point(uint32_t p_x, LightMap *p_line) {
- LightMap *pixel = &p_line[p_x];
- if (pixel->pos == Vector3())
- return;
- switch (bake_mode) {
- case BAKE_MODE_CONE_TRACE: {
- pixel->light = _compute_pixel_light_at_pos(pixel->pos, pixel->normal) * energy;
- } break;
- case BAKE_MODE_RAY_TRACE: {
- pixel->light = _compute_ray_trace_at_pos(pixel->pos, pixel->normal) * energy;
- } break;
- }
- }
- Error VoxelLightBaker::make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float), void *p_bake_time_ud) {
- //transfer light information to a lightmap
- Ref<Mesh> mesh = p_mesh;
- int width = mesh->get_lightmap_size_hint().x;
- int height = mesh->get_lightmap_size_hint().y;
- //step 1 - create lightmap
- Vector<LightMap> lightmap;
- lightmap.resize(width * height);
- Transform xform = to_cell_space * p_xform;
- //step 2 plot faces to lightmap
- for (int i = 0; i < mesh->get_surface_count(); i++) {
- Array arrays = mesh->surface_get_arrays(i);
- PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX];
- PoolVector<Vector3> normals = arrays[Mesh::ARRAY_NORMAL];
- PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2];
- PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX];
- ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER);
- ERR_FAIL_COND_V(normals.size() == 0, ERR_INVALID_PARAMETER);
- ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER);
- int vc = vertices.size();
- PoolVector<Vector3>::Read vr = vertices.read();
- PoolVector<Vector3>::Read nr = normals.read();
- PoolVector<Vector2>::Read u2r = uv2.read();
- PoolVector<int>::Read ir;
- int ic = 0;
- if (indices.size()) {
- ic = indices.size();
- ir = indices.read();
- }
- int faces = ic ? ic / 3 : vc / 3;
- for (int i = 0; i < faces; i++) {
- Vector3 vertex[3];
- Vector3 normal[3];
- Vector2 uv[3];
- for (int j = 0; j < 3; j++) {
- int idx = ic ? ir[i * 3 + j] : i * 3 + j;
- vertex[j] = xform.xform(vr[idx]);
- normal[j] = xform.basis.xform(nr[idx]).normalized();
- uv[j] = u2r[idx];
- }
- _plot_triangle(uv, vertex, normal, lightmap.ptrw(), width, height);
- }
- }
- //step 3 perform voxel cone trace on lightmap pixels
- {
- LightMap *lightmap_ptr = lightmap.ptrw();
- uint64_t begin_time = OS::get_singleton()->get_ticks_usec();
- volatile int lines = 0;
- // make sure our OS-level rng is seeded
- for (int i = 0; i < height; i++) {
- thread_process_array(width, this, &VoxelLightBaker::_lightmap_bake_point, &lightmap_ptr[i * width]);
- lines = MAX(lines, i); //for multithread
- if (p_bake_time_func) {
- uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time;
- float elapsed_sec = double(elapsed) / 1000000.0;
- float remaining = lines < 1 ? 0 : (elapsed_sec / lines) * (height - lines - 1);
- if (p_bake_time_func(p_bake_time_ud, remaining, lines / float(height))) {
- return ERR_SKIP;
- }
- }
- }
- if (bake_mode == BAKE_MODE_RAY_TRACE) {
- //blur
- //gauss kernel, 7 step sigma 2
- static const float gauss_kernel[4] = { 0.214607f, 0.189879f, 0.131514f, 0.071303f };
- //horizontal pass
- for (int i = 0; i < height; i++) {
- for (int j = 0; j < width; j++) {
- if (lightmap_ptr[i * width + j].normal == Vector3()) {
- continue; //empty
- }
- float gauss_sum = gauss_kernel[0];
- Vector3 accum = lightmap_ptr[i * width + j].light * gauss_kernel[0];
- for (int k = 1; k < 4; k++) {
- int new_x = j + k;
- if (new_x >= width || lightmap_ptr[i * width + new_x].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k];
- }
- for (int k = 1; k < 4; k++) {
- int new_x = j - k;
- if (new_x < 0 || lightmap_ptr[i * width + new_x].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k];
- }
- lightmap_ptr[i * width + j].pos = accum /= gauss_sum;
- }
- }
- //vertical pass
- for (int i = 0; i < height; i++) {
- for (int j = 0; j < width; j++) {
- if (lightmap_ptr[i * width + j].normal == Vector3())
- continue; //empty, don't write over it anyway
- float gauss_sum = gauss_kernel[0];
- Vector3 accum = lightmap_ptr[i * width + j].pos * gauss_kernel[0];
- for (int k = 1; k < 4; k++) {
- int new_y = i + k;
- if (new_y >= height || lightmap_ptr[new_y * width + j].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k];
- }
- for (int k = 1; k < 4; k++) {
- int new_y = i - k;
- if (new_y < 0 || lightmap_ptr[new_y * width + j].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k];
- }
- lightmap_ptr[i * width + j].light = accum /= gauss_sum;
- }
- }
- }
- //add directional light (do this after blur)
- {
- LightMap *lightmap_ptr = lightmap.ptrw();
- const Cell *cells = bake_cells.ptr();
- const Light *light = bake_light.ptr();
- #ifdef _OPENMP
- #pragma omp parallel
- #endif
- for (int i = 0; i < height; i++) {
- #ifdef _OPENMP
- #pragma omp parallel for schedule(dynamic, 1)
- #endif
- for (int j = 0; j < width; j++) {
- //if (i == 125 && j == 280) {
- LightMap *pixel = &lightmap_ptr[i * width + j];
- if (pixel->pos == Vector3())
- continue; //unused, skipe
- int x = int(pixel->pos.x) - 1;
- int y = int(pixel->pos.y) - 1;
- int z = int(pixel->pos.z) - 1;
- Color accum;
- int size = 1 << (cell_subdiv - 1);
- int found = 0;
- for (int k = 0; k < 8; k++) {
- int ofs_x = x;
- int ofs_y = y;
- int ofs_z = z;
- if (k & 1)
- ofs_x++;
- if (k & 2)
- ofs_y++;
- if (k & 4)
- ofs_z++;
- if (x < 0 || x >= size)
- continue;
- if (y < 0 || y >= size)
- continue;
- if (z < 0 || z >= size)
- continue;
- uint32_t cell = _find_cell_at_pos(cells, ofs_x, ofs_y, ofs_z);
- if (cell == CHILD_EMPTY)
- continue;
- for (int l = 0; l < 6; l++) {
- float s = pixel->normal.dot(aniso_normal[l]);
- if (s < 0)
- s = 0;
- accum.r += light[cell].direct_accum[l][0] * s;
- accum.g += light[cell].direct_accum[l][1] * s;
- accum.b += light[cell].direct_accum[l][2] * s;
- }
- found++;
- }
- if (found) {
- accum /= found;
- pixel->light.x += accum.r;
- pixel->light.y += accum.g;
- pixel->light.z += accum.b;
- }
- }
- }
- }
- {
- //fill gaps with neighbour vertices to avoid filter fades to black on edges
- for (int i = 0; i < height; i++) {
- for (int j = 0; j < width; j++) {
- if (lightmap_ptr[i * width + j].normal != Vector3()) {
- continue; //filled, skip
- }
- //this can't be made separatable..
- int closest_i = -1, closest_j = 1;
- float closest_dist = 1e20;
- const int margin = 3;
- for (int y = i - margin; y <= i + margin; y++) {
- for (int x = j - margin; x <= j + margin; x++) {
- if (x == j && y == i)
- continue;
- if (x < 0 || x >= width)
- continue;
- if (y < 0 || y >= height)
- continue;
- if (lightmap_ptr[y * width + x].normal == Vector3())
- continue; //also ensures that blitted stuff is not reused
- float dist = Vector2(i - y, j - x).length();
- if (dist > closest_dist)
- continue;
- closest_dist = dist;
- closest_i = y;
- closest_j = x;
- }
- }
- if (closest_i != -1) {
- lightmap_ptr[i * width + j].light = lightmap_ptr[closest_i * width + closest_j].light;
- }
- }
- }
- }
- {
- //fill the lightmap data
- r_lightmap.width = width;
- r_lightmap.height = height;
- r_lightmap.light.resize(lightmap.size() * 3);
- PoolVector<float>::Write w = r_lightmap.light.write();
- for (int i = 0; i < lightmap.size(); i++) {
- w[i * 3 + 0] = lightmap[i].light.x;
- w[i * 3 + 1] = lightmap[i].light.y;
- w[i * 3 + 2] = lightmap[i].light.z;
- }
- }
- // Enable for debugging
- #if 0
- {
- PoolVector<uint8_t> img;
- int ls = lightmap.size();
- img.resize(ls * 3);
- {
- PoolVector<uint8_t>::Write w = img.write();
- for (int i = 0; i < ls; i++) {
- w[i * 3 + 0] = CLAMP(lightmap_ptr[i].light.x * 255, 0, 255);
- w[i * 3 + 1] = CLAMP(lightmap_ptr[i].light.y * 255, 0, 255);
- w[i * 3 + 2] = CLAMP(lightmap_ptr[i].light.z * 255, 0, 255);
- //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].normal.x * 255, 0, 255);
- //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].normal.y * 255, 0, 255);
- //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].normal.z * 255, 0, 255);
- //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].pos.x / (1 << (cell_subdiv - 1)) * 255, 0, 255);
- //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].pos.y / (1 << (cell_subdiv - 1)) * 255, 0, 255);
- //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].pos.z / (1 << (cell_subdiv - 1)) * 255, 0, 255);
- }
- }
- Ref<Image> image;
- image.instance();
- image->create(width, height, false, Image::FORMAT_RGB8, img);
- String name = p_mesh->get_name();
- if (name == "") {
- name = "Mesh" + itos(p_mesh->get_instance_id());
- }
- image->save_png(name + ".png");
- }
- #endif
- }
- return OK;
- }
- void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) {
- original_bounds = p_bounds;
- cell_subdiv = p_subdiv;
- bake_cells.resize(1);
- material_cache.clear();
- //find out the actual real bounds, power of 2, which gets the highest subdivision
- po2_bounds = p_bounds;
- int longest_axis = po2_bounds.get_longest_axis_index();
- axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1));
- leaf_voxel_count = 0;
- for (int i = 0; i < 3; i++) {
- if (i == longest_axis)
- continue;
- axis_cell_size[i] = axis_cell_size[longest_axis];
- float axis_size = po2_bounds.size[longest_axis];
- //shrink until fit subdiv
- while (axis_size / 2.0 >= po2_bounds.size[i]) {
- axis_size /= 2.0;
- axis_cell_size[i] >>= 1;
- }
- po2_bounds.size[i] = po2_bounds.size[longest_axis];
- }
- Transform to_bounds;
- to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
- to_bounds.origin = po2_bounds.position;
- Transform to_grid;
- to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
- to_cell_space = to_grid * to_bounds.affine_inverse();
- cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis];
- }
- void VoxelLightBaker::end_bake() {
- _fixup_plot(0, 0);
- }
- //create the data for visual server
- PoolVector<int> VoxelLightBaker::create_gi_probe_data() {
- PoolVector<int> data;
- data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest.
- {
- PoolVector<int>::Write w = data.write();
- uint32_t *w32 = (uint32_t *)w.ptr();
- w32[0] = 0; //version
- w32[1] = cell_subdiv; //subdiv
- w32[2] = axis_cell_size[0];
- w32[3] = axis_cell_size[1];
- w32[4] = axis_cell_size[2];
- w32[5] = bake_cells.size();
- w32[6] = leaf_voxel_count;
- int ofs = 16;
- for (int i = 0; i < bake_cells.size(); i++) {
- for (int j = 0; j < 8; j++) {
- w32[ofs++] = bake_cells[i].children[j];
- }
- { //albedo
- uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16;
- rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8;
- rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0;
- w32[ofs++] = rgba;
- }
- { //emission
- Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]);
- float l = e.length();
- if (l > 0) {
- e.normalize();
- l = CLAMP(l / 8.0, 0, 1.0);
- }
- uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24;
- em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16;
- em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8;
- em |= uint32_t(CLAMP(l * 255, 0, 255));
- w32[ofs++] = em;
- }
- //w32[ofs++]=bake_cells[i].used_sides;
- { //normal
- Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]);
- n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
- uint32_t norm = 0;
- norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16;
- norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8;
- norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0;
- w32[ofs++] = norm;
- }
- {
- uint16_t alpha = CLAMP(uint32_t(bake_cells[i].alpha * 65535.0), 0, 65535);
- uint16_t level = bake_cells[i].level;
- w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha);
- }
- }
- }
- return data;
- }
- void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode) {
- if (p_level == cell_subdiv - 1) {
- Vector3 center = p_aabb.position + p_aabb.size * 0.5;
- Transform xform;
- xform.origin = center;
- xform.basis.scale(p_aabb.size * 0.5);
- p_multimesh->set_instance_transform(idx, xform);
- Color col;
- if (p_mode == DEBUG_ALBEDO) {
- col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]);
- } else if (p_mode == DEBUG_LIGHT) {
- for (int i = 0; i < 6; i++) {
- col.r += bake_light[p_idx].accum[i][0];
- col.g += bake_light[p_idx].accum[i][1];
- col.b += bake_light[p_idx].accum[i][2];
- col.r += bake_light[p_idx].direct_accum[i][0];
- col.g += bake_light[p_idx].direct_accum[i][1];
- col.b += bake_light[p_idx].direct_accum[i][2];
- }
- }
- //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
- p_multimesh->set_instance_color(idx, col);
- idx++;
- } else {
- for (int i = 0; i < 8; i++) {
- uint32_t child = bake_cells[p_idx].children[i];
- if (child == CHILD_EMPTY || child >= max_original_cells)
- continue;
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
- if (i & 1)
- aabb.position.x += aabb.size.x;
- if (i & 2)
- aabb.position.y += aabb.size.y;
- if (i & 4)
- aabb.position.z += aabb.size.z;
- _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx, p_mode);
- }
- }
- }
- Ref<MultiMesh> VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) {
- Ref<MultiMesh> mm;
- ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm);
- mm.instance();
- mm->set_transform_format(MultiMesh::TRANSFORM_3D);
- mm->set_color_format(MultiMesh::COLOR_8BIT);
- mm->set_instance_count(leaf_voxel_count);
- Ref<ArrayMesh> mesh;
- mesh.instance();
- {
- Array arr;
- arr.resize(Mesh::ARRAY_MAX);
- PoolVector<Vector3> vertices;
- PoolVector<Color> colors;
- #define ADD_VTX(m_idx) \
- ; \
- vertices.push_back(face_points[m_idx]); \
- colors.push_back(Color(1, 1, 1, 1));
- for (int i = 0; i < 6; i++) {
- Vector3 face_points[4];
- for (int j = 0; j < 4; j++) {
- float v[3];
- v[0] = 1.0;
- v[1] = 1 - 2 * ((j >> 1) & 1);
- v[2] = v[1] * (1 - 2 * (j & 1));
- for (int k = 0; k < 3; k++) {
- if (i < 3)
- face_points[j][(i + k) % 3] = v[k];
- else
- face_points[3 - j][(i + k) % 3] = -v[k];
- }
- }
- //tri 1
- ADD_VTX(0);
- ADD_VTX(1);
- ADD_VTX(2);
- //tri 2
- ADD_VTX(2);
- ADD_VTX(3);
- ADD_VTX(0);
- }
- arr[Mesh::ARRAY_VERTEX] = vertices;
- arr[Mesh::ARRAY_COLOR] = colors;
- mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
- }
- {
- Ref<SpatialMaterial> fsm;
- fsm.instance();
- fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
- fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
- fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
- fsm->set_albedo(Color(1, 1, 1, 1));
- mesh->surface_set_material(0, fsm);
- }
- mm->set_mesh(mesh);
- int idx = 0;
- _debug_mesh(0, 0, po2_bounds, mm, idx, p_mode);
- return mm;
- }
- struct VoxelLightBakerOctree {
- enum {
- CHILD_EMPTY = 0xFFFFFFFF
- };
- uint16_t light[6][3]; //anisotropic light
- float alpha;
- uint32_t children[8];
- };
- PoolVector<uint8_t> VoxelLightBaker::create_capture_octree(int p_subdiv) {
- p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one
- Vector<uint32_t> remap;
- int bc = bake_cells.size();
- remap.resize(bc);
- Vector<uint32_t> demap;
- int new_size = 0;
- for (int i = 0; i < bc; i++) {
- uint32_t c = CHILD_EMPTY;
- if (bake_cells[i].level < p_subdiv) {
- c = new_size;
- new_size++;
- demap.push_back(i);
- }
- remap.write[i] = c;
- }
- Vector<VoxelLightBakerOctree> octree;
- octree.resize(new_size);
- for (int i = 0; i < new_size; i++) {
- octree.write[i].alpha = bake_cells[demap[i]].alpha;
- for (int j = 0; j < 6; j++) {
- for (int k = 0; k < 3; k++) {
- float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light
- l += bake_cells[demap[i]].emission[k]; //add emission
- octree.write[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree
- }
- }
- for (int j = 0; j < 8; j++) {
- uint32_t child = bake_cells[demap[i]].children[j];
- octree.write[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child];
- }
- }
- PoolVector<uint8_t> ret;
- int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree);
- ret.resize(ret_bytes);
- {
- PoolVector<uint8_t>::Write w = ret.write();
- copymem(w.ptr(), octree.ptr(), ret_bytes);
- }
- return ret;
- }
- float VoxelLightBaker::get_cell_size() const {
- return cell_size;
- }
- Transform VoxelLightBaker::get_to_cell_space_xform() const {
- return to_cell_space;
- }
- VoxelLightBaker::VoxelLightBaker() {
- color_scan_cell_width = 4;
- bake_texture_size = 128;
- propagation = 0.85;
- energy = 1.0;
- }
|