vector3.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. /*************************************************************************/
  2. /* vector3.h */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifndef VECTOR3_H
  31. #define VECTOR3_H
  32. #include "core/math/math_defs.h"
  33. #include "core/math/math_funcs.h"
  34. #include "core/typedefs.h"
  35. #include "core/ustring.h"
  36. class Basis;
  37. struct Vector3 {
  38. enum Axis {
  39. AXIS_X,
  40. AXIS_Y,
  41. AXIS_Z,
  42. };
  43. union {
  44. struct {
  45. real_t x;
  46. real_t y;
  47. real_t z;
  48. };
  49. real_t coord[3];
  50. };
  51. _FORCE_INLINE_ const real_t &operator[](int p_axis) const {
  52. return coord[p_axis];
  53. }
  54. _FORCE_INLINE_ real_t &operator[](int p_axis) {
  55. return coord[p_axis];
  56. }
  57. void set_axis(int p_axis, real_t p_value);
  58. real_t get_axis(int p_axis) const;
  59. int min_axis() const;
  60. int max_axis() const;
  61. _FORCE_INLINE_ real_t length() const;
  62. _FORCE_INLINE_ real_t length_squared() const;
  63. _FORCE_INLINE_ void normalize();
  64. _FORCE_INLINE_ Vector3 normalized() const;
  65. _FORCE_INLINE_ bool is_normalized() const;
  66. _FORCE_INLINE_ Vector3 inverse() const;
  67. _FORCE_INLINE_ void zero();
  68. void snap(Vector3 p_val);
  69. Vector3 snapped(Vector3 p_val) const;
  70. void rotate(const Vector3 &p_axis, real_t p_phi);
  71. Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
  72. /* Static Methods between 2 vector3s */
  73. _FORCE_INLINE_ Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const;
  74. _FORCE_INLINE_ Vector3 slerp(const Vector3 &p_b, real_t p_t) const;
  75. Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
  76. Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
  77. _FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
  78. _FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
  79. _FORCE_INLINE_ Basis outer(const Vector3 &p_b) const;
  80. _FORCE_INLINE_ Basis to_diagonal_matrix() const;
  81. _FORCE_INLINE_ Vector3 abs() const;
  82. _FORCE_INLINE_ Vector3 floor() const;
  83. _FORCE_INLINE_ Vector3 sign() const;
  84. _FORCE_INLINE_ Vector3 ceil() const;
  85. _FORCE_INLINE_ Vector3 round() const;
  86. _FORCE_INLINE_ real_t distance_to(const Vector3 &p_b) const;
  87. _FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_b) const;
  88. _FORCE_INLINE_ Vector3 project(const Vector3 &p_b) const;
  89. _FORCE_INLINE_ real_t angle_to(const Vector3 &p_b) const;
  90. _FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
  91. _FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
  92. _FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
  93. /* Operators */
  94. _FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
  95. _FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
  96. _FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
  97. _FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
  98. _FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
  99. _FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
  100. _FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
  101. _FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
  102. _FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar);
  103. _FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
  104. _FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar);
  105. _FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;
  106. _FORCE_INLINE_ Vector3 operator-() const;
  107. _FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
  108. _FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
  109. _FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
  110. _FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
  111. operator String() const;
  112. _FORCE_INLINE_ Vector3() { x = y = z = 0; }
  113. _FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) {
  114. x = p_x;
  115. y = p_y;
  116. z = p_z;
  117. }
  118. };
  119. // Should be included after class definition, otherwise we get circular refs
  120. #include "core/math/matrix3.h"
  121. Vector3 Vector3::cross(const Vector3 &p_b) const {
  122. Vector3 ret(
  123. (y * p_b.z) - (z * p_b.y),
  124. (z * p_b.x) - (x * p_b.z),
  125. (x * p_b.y) - (y * p_b.x));
  126. return ret;
  127. }
  128. real_t Vector3::dot(const Vector3 &p_b) const {
  129. return x * p_b.x + y * p_b.y + z * p_b.z;
  130. }
  131. Basis Vector3::outer(const Vector3 &p_b) const {
  132. Vector3 row0(x * p_b.x, x * p_b.y, x * p_b.z);
  133. Vector3 row1(y * p_b.x, y * p_b.y, y * p_b.z);
  134. Vector3 row2(z * p_b.x, z * p_b.y, z * p_b.z);
  135. return Basis(row0, row1, row2);
  136. }
  137. Basis Vector3::to_diagonal_matrix() const {
  138. return Basis(x, 0, 0,
  139. 0, y, 0,
  140. 0, 0, z);
  141. }
  142. Vector3 Vector3::abs() const {
  143. return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
  144. }
  145. Vector3 Vector3::sign() const {
  146. return Vector3(SGN(x), SGN(y), SGN(z));
  147. }
  148. Vector3 Vector3::floor() const {
  149. return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
  150. }
  151. Vector3 Vector3::ceil() const {
  152. return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
  153. }
  154. Vector3 Vector3::round() const {
  155. return Vector3(Math::round(x), Math::round(y), Math::round(z));
  156. }
  157. Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const {
  158. return Vector3(
  159. x + (p_t * (p_b.x - x)),
  160. y + (p_t * (p_b.y - y)),
  161. z + (p_t * (p_b.z - z)));
  162. }
  163. Vector3 Vector3::slerp(const Vector3 &p_b, real_t p_t) const {
  164. #ifdef MATH_CHECKS
  165. ERR_FAIL_COND_V(!is_normalized(), Vector3());
  166. #endif
  167. real_t theta = angle_to(p_b);
  168. return rotated(cross(p_b), theta * p_t);
  169. }
  170. real_t Vector3::distance_to(const Vector3 &p_b) const {
  171. return (p_b - *this).length();
  172. }
  173. real_t Vector3::distance_squared_to(const Vector3 &p_b) const {
  174. return (p_b - *this).length_squared();
  175. }
  176. Vector3 Vector3::project(const Vector3 &p_b) const {
  177. return p_b * (dot(p_b) / p_b.length_squared());
  178. }
  179. real_t Vector3::angle_to(const Vector3 &p_b) const {
  180. return Math::atan2(cross(p_b).length(), dot(p_b));
  181. }
  182. /* Operators */
  183. Vector3 &Vector3::operator+=(const Vector3 &p_v) {
  184. x += p_v.x;
  185. y += p_v.y;
  186. z += p_v.z;
  187. return *this;
  188. }
  189. Vector3 Vector3::operator+(const Vector3 &p_v) const {
  190. return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
  191. }
  192. Vector3 &Vector3::operator-=(const Vector3 &p_v) {
  193. x -= p_v.x;
  194. y -= p_v.y;
  195. z -= p_v.z;
  196. return *this;
  197. }
  198. Vector3 Vector3::operator-(const Vector3 &p_v) const {
  199. return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
  200. }
  201. Vector3 &Vector3::operator*=(const Vector3 &p_v) {
  202. x *= p_v.x;
  203. y *= p_v.y;
  204. z *= p_v.z;
  205. return *this;
  206. }
  207. Vector3 Vector3::operator*(const Vector3 &p_v) const {
  208. return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
  209. }
  210. Vector3 &Vector3::operator/=(const Vector3 &p_v) {
  211. x /= p_v.x;
  212. y /= p_v.y;
  213. z /= p_v.z;
  214. return *this;
  215. }
  216. Vector3 Vector3::operator/(const Vector3 &p_v) const {
  217. return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
  218. }
  219. Vector3 &Vector3::operator*=(real_t p_scalar) {
  220. x *= p_scalar;
  221. y *= p_scalar;
  222. z *= p_scalar;
  223. return *this;
  224. }
  225. _FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
  226. return p_vec * p_scalar;
  227. }
  228. Vector3 Vector3::operator*(real_t p_scalar) const {
  229. return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
  230. }
  231. Vector3 &Vector3::operator/=(real_t p_scalar) {
  232. x /= p_scalar;
  233. y /= p_scalar;
  234. z /= p_scalar;
  235. return *this;
  236. }
  237. Vector3 Vector3::operator/(real_t p_scalar) const {
  238. return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
  239. }
  240. Vector3 Vector3::operator-() const {
  241. return Vector3(-x, -y, -z);
  242. }
  243. bool Vector3::operator==(const Vector3 &p_v) const {
  244. return (x == p_v.x && y == p_v.y && z == p_v.z);
  245. }
  246. bool Vector3::operator!=(const Vector3 &p_v) const {
  247. return (x != p_v.x || y != p_v.y || z != p_v.z);
  248. }
  249. bool Vector3::operator<(const Vector3 &p_v) const {
  250. if (x == p_v.x) {
  251. if (y == p_v.y)
  252. return z < p_v.z;
  253. else
  254. return y < p_v.y;
  255. } else {
  256. return x < p_v.x;
  257. }
  258. }
  259. bool Vector3::operator<=(const Vector3 &p_v) const {
  260. if (x == p_v.x) {
  261. if (y == p_v.y)
  262. return z <= p_v.z;
  263. else
  264. return y < p_v.y;
  265. } else {
  266. return x < p_v.x;
  267. }
  268. }
  269. _FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
  270. return p_a.cross(p_b);
  271. }
  272. _FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
  273. return p_a.dot(p_b);
  274. }
  275. real_t Vector3::length() const {
  276. real_t x2 = x * x;
  277. real_t y2 = y * y;
  278. real_t z2 = z * z;
  279. return Math::sqrt(x2 + y2 + z2);
  280. }
  281. real_t Vector3::length_squared() const {
  282. real_t x2 = x * x;
  283. real_t y2 = y * y;
  284. real_t z2 = z * z;
  285. return x2 + y2 + z2;
  286. }
  287. void Vector3::normalize() {
  288. real_t l = length();
  289. if (l == 0) {
  290. x = y = z = 0;
  291. } else {
  292. x /= l;
  293. y /= l;
  294. z /= l;
  295. }
  296. }
  297. Vector3 Vector3::normalized() const {
  298. Vector3 v = *this;
  299. v.normalize();
  300. return v;
  301. }
  302. bool Vector3::is_normalized() const {
  303. // use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
  304. return Math::is_equal_approx(length_squared(), 1.0);
  305. }
  306. Vector3 Vector3::inverse() const {
  307. return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
  308. }
  309. void Vector3::zero() {
  310. x = y = z = 0;
  311. }
  312. // slide returns the component of the vector along the given plane, specified by its normal vector.
  313. Vector3 Vector3::slide(const Vector3 &p_normal) const {
  314. #ifdef MATH_CHECKS
  315. ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
  316. #endif
  317. return *this - p_normal * this->dot(p_normal);
  318. }
  319. Vector3 Vector3::bounce(const Vector3 &p_normal) const {
  320. return -reflect(p_normal);
  321. }
  322. Vector3 Vector3::reflect(const Vector3 &p_normal) const {
  323. #ifdef MATH_CHECKS
  324. ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
  325. #endif
  326. return 2.0 * p_normal * this->dot(p_normal) - *this;
  327. }
  328. #endif // VECTOR3_H