123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 |
- /*************************************************************************/
- /* math_funcs.h */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #ifndef MATH_FUNCS_H
- #define MATH_FUNCS_H
- #include "core/math/math_defs.h"
- #include "core/math/random_pcg.h"
- #include "core/typedefs.h"
- #include "thirdparty/misc/pcg.h"
- #include <float.h>
- #include <math.h>
- class Math {
- static RandomPCG default_rand;
- public:
- Math() {} // useless to instance
- static const uint64_t RANDOM_MAX = 0xFFFFFFFF;
- static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
- static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
- static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
- static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
- static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
- static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
- static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
- static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
- static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
- static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
- static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
- static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
- static _ALWAYS_INLINE_ double asin(double p_x) { return ::asin(p_x); }
- static _ALWAYS_INLINE_ float asin(float p_x) { return ::asinf(p_x); }
- static _ALWAYS_INLINE_ double acos(double p_x) { return ::acos(p_x); }
- static _ALWAYS_INLINE_ float acos(float p_x) { return ::acosf(p_x); }
- static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
- static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
- static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y, p_x); }
- static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y, p_x); }
- static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
- static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
- static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) { return ::fmod(p_x, p_y); }
- static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) { return ::fmodf(p_x, p_y); }
- static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
- static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
- static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
- static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
- static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x, p_y); }
- static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x, p_y); }
- static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
- static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
- static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
- static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
- static _ALWAYS_INLINE_ bool is_nan(double p_val) {
- #ifdef _MSC_VER
- return _isnan(p_val);
- #elif defined(__GNUC__) && __GNUC__ < 6
- union {
- uint64_t u;
- double f;
- } ieee754;
- ieee754.f = p_val;
- // (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
- return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
- #else
- return isnan(p_val);
- #endif
- }
- static _ALWAYS_INLINE_ bool is_nan(float p_val) {
- #ifdef _MSC_VER
- return _isnan(p_val);
- #elif defined(__GNUC__) && __GNUC__ < 6
- union {
- uint32_t u;
- float f;
- } ieee754;
- ieee754.f = p_val;
- // -----------------------------------
- // (single-precision floating-point)
- // NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
- // : (> 0x7f800000)
- // where,
- // s : sign
- // x : non-zero number
- // -----------------------------------
- return ((ieee754.u & 0x7fffffff) > 0x7f800000);
- #else
- return isnan(p_val);
- #endif
- }
- static _ALWAYS_INLINE_ bool is_inf(double p_val) {
- #ifdef _MSC_VER
- return !_finite(p_val);
- // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
- #elif defined(__GNUC__) && __GNUC__ < 6
- union {
- uint64_t u;
- double f;
- } ieee754;
- ieee754.f = p_val;
- return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
- ((unsigned)ieee754.u == 0);
- #else
- return isinf(p_val);
- #endif
- }
- static _ALWAYS_INLINE_ bool is_inf(float p_val) {
- #ifdef _MSC_VER
- return !_finite(p_val);
- // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
- #elif defined(__GNUC__) && __GNUC__ < 6
- union {
- uint32_t u;
- float f;
- } ieee754;
- ieee754.f = p_val;
- return (ieee754.u & 0x7fffffff) == 0x7f800000;
- #else
- return isinf(p_val);
- #endif
- }
- static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
- static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
- static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; }
- static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
- double value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
- float value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y * Math_PI / 180.0; }
- static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * Math_PI / 180.0; }
- static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y * 180.0 / Math_PI; }
- static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * 180.0 / Math_PI; }
- static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
- static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
- static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) { return (p_value - p_from) / (p_to - p_from); }
- static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) { return (p_value - p_from) / (p_to - p_from); }
- static _ALWAYS_INLINE_ double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
- static _ALWAYS_INLINE_ float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
- static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
- static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
- static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
- static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
- static _ALWAYS_INLINE_ double round(double p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); }
- static _ALWAYS_INLINE_ float round(float p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); }
- static _ALWAYS_INLINE_ int wrapi(int value, int min, int max) {
- int rng = max - min;
- return min + ((((value - min) % rng) + rng) % rng);
- }
- static _ALWAYS_INLINE_ double wrapf(double value, double min, double max) {
- double rng = max - min;
- return value - (rng * Math::floor((value - min) / rng));
- }
- static _ALWAYS_INLINE_ float wrapf(float value, float min, float max) {
- float rng = max - min;
- return value - (rng * Math::floor((value - min) / rng));
- }
- // double only, as these functions are mainly used by the editor and not performance-critical,
- static double ease(double p_x, double p_c);
- static int step_decimals(double p_step);
- static double stepify(double p_value, double p_step);
- static double dectime(double p_value, double p_amount, double p_step);
- static uint32_t larger_prime(uint32_t p_val);
- static void seed(uint64_t x);
- static void randomize();
- static uint32_t rand_from_seed(uint64_t *seed);
- static uint32_t rand();
- static _ALWAYS_INLINE_ double randf() { return (double)rand() / (double)Math::RANDOM_MAX; }
- static _ALWAYS_INLINE_ float randd() { return (float)rand() / (float)Math::RANDOM_MAX; }
- static double random(double from, double to);
- static float random(float from, float to);
- static real_t random(int from, int to) { return (real_t)random((real_t)from, (real_t)to); }
- static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) {
- // TODO: Comparing floats for approximate-equality is non-trivial.
- // Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators.
- // A proper implementation in terms of ULPs should eventually replace the contents of this function.
- // See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ for details.
- return abs(a - b) < CMP_EPSILON;
- }
- static _ALWAYS_INLINE_ float absf(float g) {
- union {
- float f;
- uint32_t i;
- } u;
- u.f = g;
- u.i &= 2147483647u;
- return u.f;
- }
- static _ALWAYS_INLINE_ double absd(double g) {
- union {
- double d;
- uint64_t i;
- } u;
- u.d = g;
- u.i &= (uint64_t)9223372036854775807ll;
- return u.d;
- }
- //this function should be as fast as possible and rounding mode should not matter
- static _ALWAYS_INLINE_ int fast_ftoi(float a) {
- static int b;
- #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
- b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
- #elif defined(_MSC_VER) && _MSC_VER < 1800
- __asm fld a __asm fistp b
- /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
- // use AT&T inline assembly style, document that
- // we use memory as output (=m) and input (m)
- __asm__ __volatile__ (
- "flds %1 \n\t"
- "fistpl %0 \n\t"
- : "=m" (b)
- : "m" (a));*/
- #else
- b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
- #endif
- return b;
- }
- static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) {
- uint16_t h_exp, h_sig;
- uint32_t f_sgn, f_exp, f_sig;
- h_exp = (h & 0x7c00u);
- f_sgn = ((uint32_t)h & 0x8000u) << 16;
- switch (h_exp) {
- case 0x0000u: /* 0 or subnormal */
- h_sig = (h & 0x03ffu);
- /* Signed zero */
- if (h_sig == 0) {
- return f_sgn;
- }
- /* Subnormal */
- h_sig <<= 1;
- while ((h_sig & 0x0400u) == 0) {
- h_sig <<= 1;
- h_exp++;
- }
- f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
- f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
- return f_sgn + f_exp + f_sig;
- case 0x7c00u: /* inf or NaN */
- /* All-ones exponent and a copy of the significand */
- return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
- default: /* normalized */
- /* Just need to adjust the exponent and shift */
- return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
- }
- }
- static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
- union {
- uint32_t u32;
- float f32;
- } u;
- u.u32 = halfbits_to_floatbits(*h);
- return u.f32;
- }
- static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) {
- return halfptr_to_float(&h);
- }
- static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
- union {
- float fv;
- uint32_t ui;
- } ci;
- ci.fv = f;
- uint32_t x = ci.ui;
- uint32_t sign = (unsigned short)(x >> 31);
- uint32_t mantissa;
- uint32_t exp;
- uint16_t hf;
- // get mantissa
- mantissa = x & ((1 << 23) - 1);
- // get exponent bits
- exp = x & (0xFF << 23);
- if (exp >= 0x47800000) {
- // check if the original single precision float number is a NaN
- if (mantissa && (exp == (0xFF << 23))) {
- // we have a single precision NaN
- mantissa = (1 << 23) - 1;
- } else {
- // 16-bit half-float representation stores number as Inf
- mantissa = 0;
- }
- hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
- (uint16_t)(mantissa >> 13);
- }
- // check if exponent is <= -15
- else if (exp <= 0x38000000) {
- /*// store a denorm half-float value or zero
- exp = (0x38000000 - exp) >> 23;
- mantissa >>= (14 + exp);
- hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
- */
- hf = 0; //denormals do not work for 3D, convert to zero
- } else {
- hf = (((uint16_t)sign) << 15) |
- (uint16_t)((exp - 0x38000000) >> 13) |
- (uint16_t)(mantissa >> 13);
- }
- return hf;
- }
- static _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
- return p_step != 0 ? Math::stepify(p_target - p_offset, p_step) + p_offset : p_target;
- }
- static _ALWAYS_INLINE_ float snap_scalar_seperation(float p_offset, float p_step, float p_target, float p_separation) {
- if (p_step != 0) {
- float a = Math::stepify(p_target - p_offset, p_step + p_separation) + p_offset;
- float b = a;
- if (p_target >= 0)
- b -= p_separation;
- else
- b += p_step;
- return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
- }
- return p_target;
- }
- };
- #endif // MATH_FUNCS_H
|