camera_matrix.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. /*************************************************************************/
  2. /* camera_matrix.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "camera_matrix.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/print_string.h"
  33. void CameraMatrix::set_identity() {
  34. for (int i = 0; i < 4; i++) {
  35. for (int j = 0; j < 4; j++) {
  36. matrix[i][j] = (i == j) ? 1 : 0;
  37. }
  38. }
  39. }
  40. void CameraMatrix::set_zero() {
  41. for (int i = 0; i < 4; i++) {
  42. for (int j = 0; j < 4; j++) {
  43. matrix[i][j] = 0;
  44. }
  45. }
  46. }
  47. Plane CameraMatrix::xform4(const Plane &p_vec4) const {
  48. Plane ret;
  49. ret.normal.x = matrix[0][0] * p_vec4.normal.x + matrix[1][0] * p_vec4.normal.y + matrix[2][0] * p_vec4.normal.z + matrix[3][0] * p_vec4.d;
  50. ret.normal.y = matrix[0][1] * p_vec4.normal.x + matrix[1][1] * p_vec4.normal.y + matrix[2][1] * p_vec4.normal.z + matrix[3][1] * p_vec4.d;
  51. ret.normal.z = matrix[0][2] * p_vec4.normal.x + matrix[1][2] * p_vec4.normal.y + matrix[2][2] * p_vec4.normal.z + matrix[3][2] * p_vec4.d;
  52. ret.d = matrix[0][3] * p_vec4.normal.x + matrix[1][3] * p_vec4.normal.y + matrix[2][3] * p_vec4.normal.z + matrix[3][3] * p_vec4.d;
  53. return ret;
  54. }
  55. void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
  56. if (p_flip_fov) {
  57. p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
  58. }
  59. real_t sine, cotangent, deltaZ;
  60. real_t radians = p_fovy_degrees / 2.0 * Math_PI / 180.0;
  61. deltaZ = p_z_far - p_z_near;
  62. sine = Math::sin(radians);
  63. if ((deltaZ == 0) || (sine == 0) || (p_aspect == 0)) {
  64. return;
  65. }
  66. cotangent = Math::cos(radians) / sine;
  67. set_identity();
  68. matrix[0][0] = cotangent / p_aspect;
  69. matrix[1][1] = cotangent;
  70. matrix[2][2] = -(p_z_far + p_z_near) / deltaZ;
  71. matrix[2][3] = -1;
  72. matrix[3][2] = -2 * p_z_near * p_z_far / deltaZ;
  73. matrix[3][3] = 0;
  74. }
  75. void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
  76. if (p_flip_fov) {
  77. p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
  78. }
  79. real_t left, right, modeltranslation, ymax, xmax, frustumshift;
  80. ymax = p_z_near * tan(p_fovy_degrees * Math_PI / 360.0f);
  81. xmax = ymax * p_aspect;
  82. frustumshift = (p_intraocular_dist / 2.0) * p_z_near / p_convergence_dist;
  83. switch (p_eye) {
  84. case 1: { // left eye
  85. left = -xmax + frustumshift;
  86. right = xmax + frustumshift;
  87. modeltranslation = p_intraocular_dist / 2.0;
  88. }; break;
  89. case 2: { // right eye
  90. left = -xmax - frustumshift;
  91. right = xmax - frustumshift;
  92. modeltranslation = -p_intraocular_dist / 2.0;
  93. }; break;
  94. default: { // mono, should give the same result as set_perspective(p_fovy_degrees,p_aspect,p_z_near,p_z_far,p_flip_fov)
  95. left = -xmax;
  96. right = xmax;
  97. modeltranslation = 0.0;
  98. }; break;
  99. };
  100. set_frustum(left, right, -ymax, ymax, p_z_near, p_z_far);
  101. // translate matrix by (modeltranslation, 0.0, 0.0)
  102. CameraMatrix cm;
  103. cm.set_identity();
  104. cm.matrix[3][0] = modeltranslation;
  105. *this = *this * cm;
  106. }
  107. void CameraMatrix::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
  108. // we first calculate our base frustum on our values without taking our lens magnification into account.
  109. real_t f1 = (p_intraocular_dist * 0.5) / p_display_to_lens;
  110. real_t f2 = ((p_display_width - p_intraocular_dist) * 0.5) / p_display_to_lens;
  111. real_t f3 = (p_display_width / 4.0) / p_display_to_lens;
  112. // now we apply our oversample factor to increase our FOV. how much we oversample is always a balance we strike between performance and how much
  113. // we're willing to sacrifice in FOV.
  114. real_t add = ((f1 + f2) * (p_oversample - 1.0)) / 2.0;
  115. f1 += add;
  116. f2 += add;
  117. f3 *= p_oversample;
  118. // always apply KEEP_WIDTH aspect ratio
  119. f3 *= p_aspect;
  120. switch (p_eye) {
  121. case 1: { // left eye
  122. set_frustum(-f2 * p_z_near, f1 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
  123. }; break;
  124. case 2: { // right eye
  125. set_frustum(-f1 * p_z_near, f2 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
  126. }; break;
  127. default: { // mono, does not apply here!
  128. }; break;
  129. };
  130. };
  131. void CameraMatrix::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
  132. set_identity();
  133. matrix[0][0] = 2.0 / (p_right - p_left);
  134. matrix[3][0] = -((p_right + p_left) / (p_right - p_left));
  135. matrix[1][1] = 2.0 / (p_top - p_bottom);
  136. matrix[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
  137. matrix[2][2] = -2.0 / (p_zfar - p_znear);
  138. matrix[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
  139. matrix[3][3] = 1.0;
  140. }
  141. void CameraMatrix::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
  142. if (!p_flip_fov) {
  143. p_size *= p_aspect;
  144. }
  145. set_orthogonal(-p_size / 2, +p_size / 2, -p_size / p_aspect / 2, +p_size / p_aspect / 2, p_znear, p_zfar);
  146. }
  147. void CameraMatrix::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
  148. real_t *te = &matrix[0][0];
  149. real_t x = 2 * p_near / (p_right - p_left);
  150. real_t y = 2 * p_near / (p_top - p_bottom);
  151. real_t a = (p_right + p_left) / (p_right - p_left);
  152. real_t b = (p_top + p_bottom) / (p_top - p_bottom);
  153. real_t c = -(p_far + p_near) / (p_far - p_near);
  154. real_t d = -2 * p_far * p_near / (p_far - p_near);
  155. te[0] = x;
  156. te[1] = 0;
  157. te[2] = 0;
  158. te[3] = 0;
  159. te[4] = 0;
  160. te[5] = y;
  161. te[6] = 0;
  162. te[7] = 0;
  163. te[8] = a;
  164. te[9] = b;
  165. te[10] = c;
  166. te[11] = -1;
  167. te[12] = 0;
  168. te[13] = 0;
  169. te[14] = d;
  170. te[15] = 0;
  171. }
  172. real_t CameraMatrix::get_z_far() const {
  173. const real_t *matrix = (const real_t *)this->matrix;
  174. Plane new_plane = Plane(matrix[3] - matrix[2],
  175. matrix[7] - matrix[6],
  176. matrix[11] - matrix[10],
  177. matrix[15] - matrix[14]);
  178. new_plane.normal = -new_plane.normal;
  179. new_plane.normalize();
  180. return new_plane.d;
  181. }
  182. real_t CameraMatrix::get_z_near() const {
  183. const real_t *matrix = (const real_t *)this->matrix;
  184. Plane new_plane = Plane(matrix[3] + matrix[2],
  185. matrix[7] + matrix[6],
  186. matrix[11] + matrix[10],
  187. -matrix[15] - matrix[14]);
  188. new_plane.normalize();
  189. return new_plane.d;
  190. }
  191. void CameraMatrix::get_viewport_size(real_t &r_width, real_t &r_height) const {
  192. const real_t *matrix = (const real_t *)this->matrix;
  193. ///////--- Near Plane ---///////
  194. Plane near_plane = Plane(matrix[3] + matrix[2],
  195. matrix[7] + matrix[6],
  196. matrix[11] + matrix[10],
  197. -matrix[15] - matrix[14]);
  198. near_plane.normalize();
  199. ///////--- Right Plane ---///////
  200. Plane right_plane = Plane(matrix[3] - matrix[0],
  201. matrix[7] - matrix[4],
  202. matrix[11] - matrix[8],
  203. -matrix[15] + matrix[12]);
  204. right_plane.normalize();
  205. Plane top_plane = Plane(matrix[3] - matrix[1],
  206. matrix[7] - matrix[5],
  207. matrix[11] - matrix[9],
  208. -matrix[15] + matrix[13]);
  209. top_plane.normalize();
  210. Vector3 res;
  211. near_plane.intersect_3(right_plane, top_plane, &res);
  212. r_width = res.x;
  213. r_height = res.y;
  214. }
  215. bool CameraMatrix::get_endpoints(const Transform &p_transform, Vector3 *p_8points) const {
  216. Vector<Plane> planes = get_projection_planes(Transform());
  217. const Planes intersections[8][3] = {
  218. { PLANE_FAR, PLANE_LEFT, PLANE_TOP },
  219. { PLANE_FAR, PLANE_LEFT, PLANE_BOTTOM },
  220. { PLANE_FAR, PLANE_RIGHT, PLANE_TOP },
  221. { PLANE_FAR, PLANE_RIGHT, PLANE_BOTTOM },
  222. { PLANE_NEAR, PLANE_LEFT, PLANE_TOP },
  223. { PLANE_NEAR, PLANE_LEFT, PLANE_BOTTOM },
  224. { PLANE_NEAR, PLANE_RIGHT, PLANE_TOP },
  225. { PLANE_NEAR, PLANE_RIGHT, PLANE_BOTTOM },
  226. };
  227. for (int i = 0; i < 8; i++) {
  228. Vector3 point;
  229. bool res = planes[intersections[i][0]].intersect_3(planes[intersections[i][1]], planes[intersections[i][2]], &point);
  230. ERR_FAIL_COND_V(!res, false);
  231. p_8points[i] = p_transform.xform(point);
  232. }
  233. return true;
  234. }
  235. Vector<Plane> CameraMatrix::get_projection_planes(const Transform &p_transform) const {
  236. /** Fast Plane Extraction from combined modelview/projection matrices.
  237. * References:
  238. * http://www.markmorley.com/opengl/frustumculling.html
  239. * http://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf
  240. */
  241. Vector<Plane> planes;
  242. const real_t *matrix = (const real_t *)this->matrix;
  243. Plane new_plane;
  244. ///////--- Near Plane ---///////
  245. new_plane = Plane(matrix[3] + matrix[2],
  246. matrix[7] + matrix[6],
  247. matrix[11] + matrix[10],
  248. matrix[15] + matrix[14]);
  249. new_plane.normal = -new_plane.normal;
  250. new_plane.normalize();
  251. planes.push_back(p_transform.xform(new_plane));
  252. ///////--- Far Plane ---///////
  253. new_plane = Plane(matrix[3] - matrix[2],
  254. matrix[7] - matrix[6],
  255. matrix[11] - matrix[10],
  256. matrix[15] - matrix[14]);
  257. new_plane.normal = -new_plane.normal;
  258. new_plane.normalize();
  259. planes.push_back(p_transform.xform(new_plane));
  260. ///////--- Left Plane ---///////
  261. new_plane = Plane(matrix[3] + matrix[0],
  262. matrix[7] + matrix[4],
  263. matrix[11] + matrix[8],
  264. matrix[15] + matrix[12]);
  265. new_plane.normal = -new_plane.normal;
  266. new_plane.normalize();
  267. planes.push_back(p_transform.xform(new_plane));
  268. ///////--- Top Plane ---///////
  269. new_plane = Plane(matrix[3] - matrix[1],
  270. matrix[7] - matrix[5],
  271. matrix[11] - matrix[9],
  272. matrix[15] - matrix[13]);
  273. new_plane.normal = -new_plane.normal;
  274. new_plane.normalize();
  275. planes.push_back(p_transform.xform(new_plane));
  276. ///////--- Right Plane ---///////
  277. new_plane = Plane(matrix[3] - matrix[0],
  278. matrix[7] - matrix[4],
  279. matrix[11] - matrix[8],
  280. matrix[15] - matrix[12]);
  281. new_plane.normal = -new_plane.normal;
  282. new_plane.normalize();
  283. planes.push_back(p_transform.xform(new_plane));
  284. ///////--- Bottom Plane ---///////
  285. new_plane = Plane(matrix[3] + matrix[1],
  286. matrix[7] + matrix[5],
  287. matrix[11] + matrix[9],
  288. matrix[15] + matrix[13]);
  289. new_plane.normal = -new_plane.normal;
  290. new_plane.normalize();
  291. planes.push_back(p_transform.xform(new_plane));
  292. return planes;
  293. }
  294. CameraMatrix CameraMatrix::inverse() const {
  295. CameraMatrix cm = *this;
  296. cm.invert();
  297. return cm;
  298. }
  299. void CameraMatrix::invert() {
  300. int i, j, k;
  301. int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */
  302. real_t pvt_val; /* Value of current pivot element */
  303. real_t hold; /* Temporary storage */
  304. real_t determinat; /* Determinant */
  305. determinat = 1.0;
  306. for (k = 0; k < 4; k++) {
  307. /** Locate k'th pivot element **/
  308. pvt_val = matrix[k][k]; /** Initialize for search **/
  309. pvt_i[k] = k;
  310. pvt_j[k] = k;
  311. for (i = k; i < 4; i++) {
  312. for (j = k; j < 4; j++) {
  313. if (Math::absd(matrix[i][j]) > Math::absd(pvt_val)) {
  314. pvt_i[k] = i;
  315. pvt_j[k] = j;
  316. pvt_val = matrix[i][j];
  317. }
  318. }
  319. }
  320. /** Product of pivots, gives determinant when finished **/
  321. determinat *= pvt_val;
  322. if (Math::absd(determinat) < 1e-7) {
  323. return; //(false); /** Matrix is singular (zero determinant). **/
  324. }
  325. /** "Interchange" rows (with sign change stuff) **/
  326. i = pvt_i[k];
  327. if (i != k) { /** If rows are different **/
  328. for (j = 0; j < 4; j++) {
  329. hold = -matrix[k][j];
  330. matrix[k][j] = matrix[i][j];
  331. matrix[i][j] = hold;
  332. }
  333. }
  334. /** "Interchange" columns **/
  335. j = pvt_j[k];
  336. if (j != k) { /** If columns are different **/
  337. for (i = 0; i < 4; i++) {
  338. hold = -matrix[i][k];
  339. matrix[i][k] = matrix[i][j];
  340. matrix[i][j] = hold;
  341. }
  342. }
  343. /** Divide column by minus pivot value **/
  344. for (i = 0; i < 4; i++) {
  345. if (i != k) matrix[i][k] /= (-pvt_val);
  346. }
  347. /** Reduce the matrix **/
  348. for (i = 0; i < 4; i++) {
  349. hold = matrix[i][k];
  350. for (j = 0; j < 4; j++) {
  351. if (i != k && j != k) matrix[i][j] += hold * matrix[k][j];
  352. }
  353. }
  354. /** Divide row by pivot **/
  355. for (j = 0; j < 4; j++) {
  356. if (j != k) matrix[k][j] /= pvt_val;
  357. }
  358. /** Replace pivot by reciprocal (at last we can touch it). **/
  359. matrix[k][k] = 1.0 / pvt_val;
  360. }
  361. /* That was most of the work, one final pass of row/column interchange */
  362. /* to finish */
  363. for (k = 4 - 2; k >= 0; k--) { /* Don't need to work with 1 by 1 corner*/
  364. i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
  365. if (i != k) { /* If rows are different */
  366. for (j = 0; j < 4; j++) {
  367. hold = matrix[k][j];
  368. matrix[k][j] = -matrix[i][j];
  369. matrix[i][j] = hold;
  370. }
  371. }
  372. j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */
  373. if (j != k) /* If columns are different */
  374. for (i = 0; i < 4; i++) {
  375. hold = matrix[i][k];
  376. matrix[i][k] = -matrix[i][j];
  377. matrix[i][j] = hold;
  378. }
  379. }
  380. }
  381. CameraMatrix::CameraMatrix() {
  382. set_identity();
  383. }
  384. CameraMatrix CameraMatrix::operator*(const CameraMatrix &p_matrix) const {
  385. CameraMatrix new_matrix;
  386. for (int j = 0; j < 4; j++) {
  387. for (int i = 0; i < 4; i++) {
  388. real_t ab = 0;
  389. for (int k = 0; k < 4; k++)
  390. ab += matrix[k][i] * p_matrix.matrix[j][k];
  391. new_matrix.matrix[j][i] = ab;
  392. }
  393. }
  394. return new_matrix;
  395. }
  396. void CameraMatrix::set_light_bias() {
  397. real_t *m = &matrix[0][0];
  398. m[0] = 0.5,
  399. m[1] = 0.0,
  400. m[2] = 0.0,
  401. m[3] = 0.0,
  402. m[4] = 0.0,
  403. m[5] = 0.5,
  404. m[6] = 0.0,
  405. m[7] = 0.0,
  406. m[8] = 0.0,
  407. m[9] = 0.0,
  408. m[10] = 0.5,
  409. m[11] = 0.0,
  410. m[12] = 0.5,
  411. m[13] = 0.5,
  412. m[14] = 0.5,
  413. m[15] = 1.0;
  414. }
  415. void CameraMatrix::set_light_atlas_rect(const Rect2 &p_rect) {
  416. real_t *m = &matrix[0][0];
  417. m[0] = p_rect.size.width,
  418. m[1] = 0.0,
  419. m[2] = 0.0,
  420. m[3] = 0.0,
  421. m[4] = 0.0,
  422. m[5] = p_rect.size.height,
  423. m[6] = 0.0,
  424. m[7] = 0.0,
  425. m[8] = 0.0,
  426. m[9] = 0.0,
  427. m[10] = 1.0,
  428. m[11] = 0.0,
  429. m[12] = p_rect.position.x,
  430. m[13] = p_rect.position.y,
  431. m[14] = 0.0,
  432. m[15] = 1.0;
  433. }
  434. CameraMatrix::operator String() const {
  435. String str;
  436. for (int i = 0; i < 4; i++)
  437. for (int j = 0; j < 4; j++)
  438. str += String((j > 0) ? ", " : "\n") + rtos(matrix[i][j]);
  439. return str;
  440. }
  441. real_t CameraMatrix::get_aspect() const {
  442. real_t w, h;
  443. get_viewport_size(w, h);
  444. return w / h;
  445. }
  446. int CameraMatrix::get_pixels_per_meter(int p_for_pixel_width) const {
  447. Vector3 result = xform(Vector3(1, 0, -1));
  448. return int((result.x * 0.5 + 0.5) * p_for_pixel_width);
  449. }
  450. bool CameraMatrix::is_orthogonal() const {
  451. return matrix[3][3] == 1.0;
  452. }
  453. real_t CameraMatrix::get_fov() const {
  454. const real_t *matrix = (const real_t *)this->matrix;
  455. Plane right_plane = Plane(matrix[3] - matrix[0],
  456. matrix[7] - matrix[4],
  457. matrix[11] - matrix[8],
  458. -matrix[15] + matrix[12]);
  459. right_plane.normalize();
  460. if ((matrix[8] == 0) && (matrix[9] == 0)) {
  461. return Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0;
  462. } else {
  463. // our frustum is asymmetrical need to calculate the left planes angle separately..
  464. Plane left_plane = Plane(matrix[3] + matrix[0],
  465. matrix[7] + matrix[4],
  466. matrix[11] + matrix[8],
  467. matrix[15] + matrix[12]);
  468. left_plane.normalize();
  469. return Math::rad2deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x)));
  470. }
  471. }
  472. void CameraMatrix::make_scale(const Vector3 &p_scale) {
  473. set_identity();
  474. matrix[0][0] = p_scale.x;
  475. matrix[1][1] = p_scale.y;
  476. matrix[2][2] = p_scale.z;
  477. }
  478. void CameraMatrix::scale_translate_to_fit(const AABB &p_aabb) {
  479. Vector3 min = p_aabb.position;
  480. Vector3 max = p_aabb.position + p_aabb.size;
  481. matrix[0][0] = 2 / (max.x - min.x);
  482. matrix[1][0] = 0;
  483. matrix[2][0] = 0;
  484. matrix[3][0] = -(max.x + min.x) / (max.x - min.x);
  485. matrix[0][1] = 0;
  486. matrix[1][1] = 2 / (max.y - min.y);
  487. matrix[2][1] = 0;
  488. matrix[3][1] = -(max.y + min.y) / (max.y - min.y);
  489. matrix[0][2] = 0;
  490. matrix[1][2] = 0;
  491. matrix[2][2] = 2 / (max.z - min.z);
  492. matrix[3][2] = -(max.z + min.z) / (max.z - min.z);
  493. matrix[0][3] = 0;
  494. matrix[1][3] = 0;
  495. matrix[2][3] = 0;
  496. matrix[3][3] = 1;
  497. }
  498. CameraMatrix::operator Transform() const {
  499. Transform tr;
  500. const real_t *m = &matrix[0][0];
  501. tr.basis.elements[0][0] = m[0];
  502. tr.basis.elements[1][0] = m[1];
  503. tr.basis.elements[2][0] = m[2];
  504. tr.basis.elements[0][1] = m[4];
  505. tr.basis.elements[1][1] = m[5];
  506. tr.basis.elements[2][1] = m[6];
  507. tr.basis.elements[0][2] = m[8];
  508. tr.basis.elements[1][2] = m[9];
  509. tr.basis.elements[2][2] = m[10];
  510. tr.origin.x = m[12];
  511. tr.origin.y = m[13];
  512. tr.origin.z = m[14];
  513. return tr;
  514. }
  515. CameraMatrix::CameraMatrix(const Transform &p_transform) {
  516. const Transform &tr = p_transform;
  517. real_t *m = &matrix[0][0];
  518. m[0] = tr.basis.elements[0][0];
  519. m[1] = tr.basis.elements[1][0];
  520. m[2] = tr.basis.elements[2][0];
  521. m[3] = 0.0;
  522. m[4] = tr.basis.elements[0][1];
  523. m[5] = tr.basis.elements[1][1];
  524. m[6] = tr.basis.elements[2][1];
  525. m[7] = 0.0;
  526. m[8] = tr.basis.elements[0][2];
  527. m[9] = tr.basis.elements[1][2];
  528. m[10] = tr.basis.elements[2][2];
  529. m[11] = 0.0;
  530. m[12] = tr.origin.x;
  531. m[13] = tr.origin.y;
  532. m[14] = tr.origin.z;
  533. m[15] = 1.0;
  534. }
  535. CameraMatrix::~CameraMatrix() {
  536. }