123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- /**************************************************************************/
- /* noise.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef NOISE_H
- #define NOISE_H
- #include "core/io/image.h"
- #include "core/variant/typed_array.h"
- class Noise : public Resource {
- GDCLASS(Noise, Resource);
- // Helper struct for get_seamless_image(). See comments in .cpp for usage.
- template <typename T>
- struct img_buff {
- T *img = nullptr;
- int width; // Array dimensions & default modulo for image.
- int height;
- int offset_x; // Offset index location on image (wrapped by specified modulo).
- int offset_y;
- int alt_width; // Alternate module for image.
- int alt_height;
- enum ALT_MODULO {
- DEFAULT = 0,
- ALT_X,
- ALT_Y,
- ALT_XY
- };
- // Multi-dimensional array indexer (e.g. img[x][y]) that supports multiple modulos.
- T &operator()(int x, int y, ALT_MODULO mode = DEFAULT) {
- switch (mode) {
- case ALT_XY:
- return img[(x + offset_x) % alt_width + ((y + offset_y) % alt_height) * width];
- case ALT_X:
- return img[(x + offset_x) % alt_width + ((y + offset_y) % height) * width];
- case ALT_Y:
- return img[(x + offset_x) % width + ((y + offset_y) % alt_height) * width];
- default:
- return img[(x + offset_x) % width + ((y + offset_y) % height) * width];
- }
- }
- };
- union l2c {
- uint32_t l;
- uint8_t c[4];
- struct {
- uint8_t r;
- uint8_t g;
- uint8_t b;
- uint8_t a;
- };
- };
- template <typename T>
- Vector<Ref<Image>> _generate_seamless_image(Vector<Ref<Image>> p_src, int p_width, int p_height, int p_depth, bool p_invert, real_t p_blend_skirt) const {
- /*
- To make a seamless image, we swap the quadrants so the edges are perfect matches.
- We initially get a 10% larger image so we have an overlap we can use to blend over the seams.
- Noise::img_buff::operator() acts as a multi-dimensional array indexer.
- It does the array math, translates between the flipped and non-flipped quadrants, and manages offsets and modulos.
- Here is how the larger source image and final output image map to each other:
- Output size = p_width*p_height Source w/ extra 10% skirt `s` size = src_width*src_height
- Q1 Q2 Q4 Q3 s1
- Q3 Q4 Q2 Q1 s2
- s5 s4 s3
- All of the loops use output coordinates, so Output:Q1 == Source:Q1
- Ex: Output(half_width, half_height) [the midpoint, corner of Q1/Q4] =>
- on Source it's translated to
- corner of Q1/s3 unless the ALT_XY modulo moves it to Q4
- */
- ERR_FAIL_COND_V(p_blend_skirt < 0, Vector<Ref<Image>>());
- int skirt_width = MAX(1, p_width * p_blend_skirt);
- int skirt_height = MAX(1, p_height * p_blend_skirt);
- int src_width = p_width + skirt_width;
- int src_height = p_height + skirt_height;
- int half_width = p_width * 0.5;
- int half_height = p_height * 0.5;
- int skirt_edge_x = half_width + skirt_width;
- int skirt_edge_y = half_height + skirt_height;
- Image::Format format = p_src[0]->get_format();
- int pixel_size = Image::get_format_pixel_size(format);
- Vector<Ref<Image>> images;
- images.resize(p_src.size());
- // First blend across x and y for all slices.
- for (int d = 0; d < images.size(); d++) {
- Vector<uint8_t> dest;
- dest.resize(p_width * p_height * pixel_size);
- img_buff<T> rd_src = {
- (T *)p_src[d]->get_data().ptr(),
- src_width, src_height,
- half_width, half_height,
- p_width, p_height
- };
- // `wr` is setup for straight x/y coordinate array access.
- img_buff<T> wr = {
- (T *)dest.ptrw(),
- p_width, p_height,
- 0, 0, 0, 0
- };
- // `rd_dest` is a readable pointer to `wr`, i.e. what has already been written to the output buffer.
- img_buff<T> rd_dest = {
- (T *)dest.ptr(),
- p_width, p_height,
- 0, 0, 0, 0
- };
- // Swap the quadrants to make edges seamless.
- for (int y = 0; y < p_height; y++) {
- for (int x = 0; x < p_width; x++) {
- // rd_src has a half offset and the shorter modulo ignores the skirt.
- // It reads and writes in Q1-4 order (see map above), skipping the skirt.
- wr(x, y) = rd_src(x, y, img_buff<T>::ALT_XY);
- }
- }
- // Blend the vertical skirt over the middle seam.
- for (int x = half_width; x < skirt_edge_x; x++) {
- int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(x - half_width) / float(skirt_width)));
- for (int y = 0; y < p_height; y++) {
- // Skip the center square
- if (y == half_height) {
- y = skirt_edge_y - 1;
- } else {
- // Starts reading at s2, ALT_Y skips s3, and continues with s1.
- wr(x, y) = _alpha_blend<T>(rd_dest(x, y), rd_src(x, y, img_buff<T>::ALT_Y), alpha);
- }
- }
- }
- // Blend the horizontal skirt over the middle seam.
- for (int y = half_height; y < skirt_edge_y; y++) {
- int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(y - half_height) / float(skirt_height)));
- for (int x = 0; x < p_width; x++) {
- // Skip the center square
- if (x == half_width) {
- x = skirt_edge_x - 1;
- } else {
- // Starts reading at s4, skips s3, continues with s5.
- wr(x, y) = _alpha_blend<T>(rd_dest(x, y), rd_src(x, y, img_buff<T>::ALT_X), alpha);
- }
- }
- }
- // Fill in the center square. Wr starts at the top left of Q4, which is the equivalent of the top left of s3, unless a modulo is used.
- for (int y = half_height; y < skirt_edge_y; y++) {
- for (int x = half_width; x < skirt_edge_x; x++) {
- int xpos = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(x - half_width) / float(skirt_width)));
- int ypos = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(y - half_height) / float(skirt_height)));
- // Blend s3(Q1) onto s5(Q2) for the top half.
- T top_blend = _alpha_blend<T>(rd_src(x, y, img_buff<T>::ALT_X), rd_src(x, y, img_buff<T>::DEFAULT), xpos);
- // Blend s1(Q3) onto Q4 for the bottom half.
- T bottom_blend = _alpha_blend<T>(rd_src(x, y, img_buff<T>::ALT_XY), rd_src(x, y, img_buff<T>::ALT_Y), xpos);
- // Blend the top half onto the bottom half.
- wr(x, y) = _alpha_blend<T>(bottom_blend, top_blend, ypos);
- }
- }
- Ref<Image> image = memnew(Image(p_width, p_height, false, format, dest));
- p_src.write[d].unref();
- images.write[d] = image;
- }
- // Now blend across z.
- if (p_depth > 1) {
- int skirt_depth = MAX(1, p_depth * p_blend_skirt);
- int half_depth = p_depth * 0.5;
- int skirt_edge_z = half_depth + skirt_depth;
- // Swap halves on depth.
- for (int i = 0; i < half_depth; i++) {
- Ref<Image> img = images[i];
- images.write[i] = images[i + half_depth];
- images.write[i + half_depth] = img;
- }
- Vector<Ref<Image>> new_images = images;
- new_images.resize(p_depth);
- // Scale seamless generation to third dimension.
- for (int z = half_depth; z < skirt_edge_z; z++) {
- int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(z - half_depth) / float(skirt_depth)));
- Vector<uint8_t> img = images[z % p_depth]->get_data();
- Vector<uint8_t> skirt = images[(z - half_depth) + p_depth]->get_data();
- Vector<uint8_t> dest;
- dest.resize(images[0]->get_width() * images[0]->get_height() * Image::get_format_pixel_size(images[0]->get_format()));
- for (int i = 0; i < img.size(); i++) {
- uint8_t fg, bg, out;
- fg = skirt[i];
- bg = img[i];
- uint16_t a = alpha + 1;
- uint16_t inv_a = 256 - alpha;
- out = (uint8_t)((a * fg + inv_a * bg) >> 8);
- dest.write[i] = out;
- }
- Ref<Image> new_image = memnew(Image(images[0]->get_width(), images[0]->get_height(), false, images[0]->get_format(), dest));
- new_images.write[z % p_depth] = new_image;
- }
- return new_images;
- }
- return images;
- }
- template <typename T>
- T _alpha_blend(T p_bg, T p_fg, int p_alpha) const {
- l2c fg, bg, out;
- fg.l = p_fg;
- bg.l = p_bg;
- uint16_t alpha;
- uint16_t inv_alpha;
- // If no alpha argument specified, use the alpha channel in the color
- if (p_alpha == -1) {
- alpha = fg.c[3] + 1;
- inv_alpha = 256 - fg.c[3];
- } else {
- alpha = p_alpha + 1;
- inv_alpha = 256 - p_alpha;
- }
- out.c[0] = (uint8_t)((alpha * fg.c[0] + inv_alpha * bg.c[0]) >> 8);
- out.c[1] = (uint8_t)((alpha * fg.c[1] + inv_alpha * bg.c[1]) >> 8);
- out.c[2] = (uint8_t)((alpha * fg.c[2] + inv_alpha * bg.c[2]) >> 8);
- out.c[3] = 0xFF;
- return out.l;
- }
- protected:
- static void _bind_methods();
- public:
- // Virtual destructor so we can delete any Noise derived object when referenced as a Noise*.
- virtual ~Noise() {}
- virtual real_t get_noise_1d(real_t p_x) const = 0;
- virtual real_t get_noise_2dv(Vector2 p_v) const = 0;
- virtual real_t get_noise_2d(real_t p_x, real_t p_y) const = 0;
- virtual real_t get_noise_3dv(Vector3 p_v) const = 0;
- virtual real_t get_noise_3d(real_t p_x, real_t p_y, real_t p_z) const = 0;
- Vector<Ref<Image>> _get_image(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_in_3d_space = false, bool p_normalize = true) const;
- virtual Ref<Image> get_image(int p_width, int p_height, bool p_invert = false, bool p_in_3d_space = false, bool p_normalize = true) const;
- virtual TypedArray<Image> get_image_3d(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_normalize = true) const;
- Vector<Ref<Image>> _get_seamless_image(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_in_3d_space = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
- virtual Ref<Image> get_seamless_image(int p_width, int p_height, bool p_invert = false, bool p_in_3d_space = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
- virtual TypedArray<Image> get_seamless_image_3d(int p_width, int p_height, int p_depth, bool p_invert = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
- };
- #endif // NOISE_H
|