noise.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. /**************************************************************************/
  2. /* noise.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifndef NOISE_H
  31. #define NOISE_H
  32. #include "core/io/image.h"
  33. #include "core/variant/typed_array.h"
  34. class Noise : public Resource {
  35. GDCLASS(Noise, Resource);
  36. // Helper struct for get_seamless_image(). See comments in .cpp for usage.
  37. template <typename T>
  38. struct img_buff {
  39. T *img = nullptr;
  40. int width; // Array dimensions & default modulo for image.
  41. int height;
  42. int offset_x; // Offset index location on image (wrapped by specified modulo).
  43. int offset_y;
  44. int alt_width; // Alternate module for image.
  45. int alt_height;
  46. enum ALT_MODULO {
  47. DEFAULT = 0,
  48. ALT_X,
  49. ALT_Y,
  50. ALT_XY
  51. };
  52. // Multi-dimensional array indexer (e.g. img[x][y]) that supports multiple modulos.
  53. T &operator()(int x, int y, ALT_MODULO mode = DEFAULT) {
  54. switch (mode) {
  55. case ALT_XY:
  56. return img[(x + offset_x) % alt_width + ((y + offset_y) % alt_height) * width];
  57. case ALT_X:
  58. return img[(x + offset_x) % alt_width + ((y + offset_y) % height) * width];
  59. case ALT_Y:
  60. return img[(x + offset_x) % width + ((y + offset_y) % alt_height) * width];
  61. default:
  62. return img[(x + offset_x) % width + ((y + offset_y) % height) * width];
  63. }
  64. }
  65. };
  66. union l2c {
  67. uint32_t l;
  68. uint8_t c[4];
  69. struct {
  70. uint8_t r;
  71. uint8_t g;
  72. uint8_t b;
  73. uint8_t a;
  74. };
  75. };
  76. template <typename T>
  77. Vector<Ref<Image>> _generate_seamless_image(Vector<Ref<Image>> p_src, int p_width, int p_height, int p_depth, bool p_invert, real_t p_blend_skirt) const {
  78. /*
  79. To make a seamless image, we swap the quadrants so the edges are perfect matches.
  80. We initially get a 10% larger image so we have an overlap we can use to blend over the seams.
  81. Noise::img_buff::operator() acts as a multi-dimensional array indexer.
  82. It does the array math, translates between the flipped and non-flipped quadrants, and manages offsets and modulos.
  83. Here is how the larger source image and final output image map to each other:
  84. Output size = p_width*p_height Source w/ extra 10% skirt `s` size = src_width*src_height
  85. Q1 Q2 Q4 Q3 s1
  86. Q3 Q4 Q2 Q1 s2
  87. s5 s4 s3
  88. All of the loops use output coordinates, so Output:Q1 == Source:Q1
  89. Ex: Output(half_width, half_height) [the midpoint, corner of Q1/Q4] =>
  90. on Source it's translated to
  91. corner of Q1/s3 unless the ALT_XY modulo moves it to Q4
  92. */
  93. ERR_FAIL_COND_V(p_blend_skirt < 0, Vector<Ref<Image>>());
  94. int skirt_width = MAX(1, p_width * p_blend_skirt);
  95. int skirt_height = MAX(1, p_height * p_blend_skirt);
  96. int src_width = p_width + skirt_width;
  97. int src_height = p_height + skirt_height;
  98. int half_width = p_width * 0.5;
  99. int half_height = p_height * 0.5;
  100. int skirt_edge_x = half_width + skirt_width;
  101. int skirt_edge_y = half_height + skirt_height;
  102. Image::Format format = p_src[0]->get_format();
  103. int pixel_size = Image::get_format_pixel_size(format);
  104. Vector<Ref<Image>> images;
  105. images.resize(p_src.size());
  106. // First blend across x and y for all slices.
  107. for (int d = 0; d < images.size(); d++) {
  108. Vector<uint8_t> dest;
  109. dest.resize(p_width * p_height * pixel_size);
  110. img_buff<T> rd_src = {
  111. (T *)p_src[d]->get_data().ptr(),
  112. src_width, src_height,
  113. half_width, half_height,
  114. p_width, p_height
  115. };
  116. // `wr` is setup for straight x/y coordinate array access.
  117. img_buff<T> wr = {
  118. (T *)dest.ptrw(),
  119. p_width, p_height,
  120. 0, 0, 0, 0
  121. };
  122. // `rd_dest` is a readable pointer to `wr`, i.e. what has already been written to the output buffer.
  123. img_buff<T> rd_dest = {
  124. (T *)dest.ptr(),
  125. p_width, p_height,
  126. 0, 0, 0, 0
  127. };
  128. // Swap the quadrants to make edges seamless.
  129. for (int y = 0; y < p_height; y++) {
  130. for (int x = 0; x < p_width; x++) {
  131. // rd_src has a half offset and the shorter modulo ignores the skirt.
  132. // It reads and writes in Q1-4 order (see map above), skipping the skirt.
  133. wr(x, y) = rd_src(x, y, img_buff<T>::ALT_XY);
  134. }
  135. }
  136. // Blend the vertical skirt over the middle seam.
  137. for (int x = half_width; x < skirt_edge_x; x++) {
  138. int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(x - half_width) / float(skirt_width)));
  139. for (int y = 0; y < p_height; y++) {
  140. // Skip the center square
  141. if (y == half_height) {
  142. y = skirt_edge_y - 1;
  143. } else {
  144. // Starts reading at s2, ALT_Y skips s3, and continues with s1.
  145. wr(x, y) = _alpha_blend<T>(rd_dest(x, y), rd_src(x, y, img_buff<T>::ALT_Y), alpha);
  146. }
  147. }
  148. }
  149. // Blend the horizontal skirt over the middle seam.
  150. for (int y = half_height; y < skirt_edge_y; y++) {
  151. int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(y - half_height) / float(skirt_height)));
  152. for (int x = 0; x < p_width; x++) {
  153. // Skip the center square
  154. if (x == half_width) {
  155. x = skirt_edge_x - 1;
  156. } else {
  157. // Starts reading at s4, skips s3, continues with s5.
  158. wr(x, y) = _alpha_blend<T>(rd_dest(x, y), rd_src(x, y, img_buff<T>::ALT_X), alpha);
  159. }
  160. }
  161. }
  162. // Fill in the center square. Wr starts at the top left of Q4, which is the equivalent of the top left of s3, unless a modulo is used.
  163. for (int y = half_height; y < skirt_edge_y; y++) {
  164. for (int x = half_width; x < skirt_edge_x; x++) {
  165. int xpos = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(x - half_width) / float(skirt_width)));
  166. int ypos = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(y - half_height) / float(skirt_height)));
  167. // Blend s3(Q1) onto s5(Q2) for the top half.
  168. T top_blend = _alpha_blend<T>(rd_src(x, y, img_buff<T>::ALT_X), rd_src(x, y, img_buff<T>::DEFAULT), xpos);
  169. // Blend s1(Q3) onto Q4 for the bottom half.
  170. T bottom_blend = _alpha_blend<T>(rd_src(x, y, img_buff<T>::ALT_XY), rd_src(x, y, img_buff<T>::ALT_Y), xpos);
  171. // Blend the top half onto the bottom half.
  172. wr(x, y) = _alpha_blend<T>(bottom_blend, top_blend, ypos);
  173. }
  174. }
  175. Ref<Image> image = memnew(Image(p_width, p_height, false, format, dest));
  176. p_src.write[d].unref();
  177. images.write[d] = image;
  178. }
  179. // Now blend across z.
  180. if (p_depth > 1) {
  181. int skirt_depth = MAX(1, p_depth * p_blend_skirt);
  182. int half_depth = p_depth * 0.5;
  183. int skirt_edge_z = half_depth + skirt_depth;
  184. // Swap halves on depth.
  185. for (int i = 0; i < half_depth; i++) {
  186. Ref<Image> img = images[i];
  187. images.write[i] = images[i + half_depth];
  188. images.write[i + half_depth] = img;
  189. }
  190. Vector<Ref<Image>> new_images = images;
  191. new_images.resize(p_depth);
  192. // Scale seamless generation to third dimension.
  193. for (int z = half_depth; z < skirt_edge_z; z++) {
  194. int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(z - half_depth) / float(skirt_depth)));
  195. Vector<uint8_t> img = images[z % p_depth]->get_data();
  196. Vector<uint8_t> skirt = images[(z - half_depth) + p_depth]->get_data();
  197. Vector<uint8_t> dest;
  198. dest.resize(images[0]->get_width() * images[0]->get_height() * Image::get_format_pixel_size(images[0]->get_format()));
  199. for (int i = 0; i < img.size(); i++) {
  200. uint8_t fg, bg, out;
  201. fg = skirt[i];
  202. bg = img[i];
  203. uint16_t a = alpha + 1;
  204. uint16_t inv_a = 256 - alpha;
  205. out = (uint8_t)((a * fg + inv_a * bg) >> 8);
  206. dest.write[i] = out;
  207. }
  208. Ref<Image> new_image = memnew(Image(images[0]->get_width(), images[0]->get_height(), false, images[0]->get_format(), dest));
  209. new_images.write[z % p_depth] = new_image;
  210. }
  211. return new_images;
  212. }
  213. return images;
  214. }
  215. template <typename T>
  216. T _alpha_blend(T p_bg, T p_fg, int p_alpha) const {
  217. l2c fg, bg, out;
  218. fg.l = p_fg;
  219. bg.l = p_bg;
  220. uint16_t alpha;
  221. uint16_t inv_alpha;
  222. // If no alpha argument specified, use the alpha channel in the color
  223. if (p_alpha == -1) {
  224. alpha = fg.c[3] + 1;
  225. inv_alpha = 256 - fg.c[3];
  226. } else {
  227. alpha = p_alpha + 1;
  228. inv_alpha = 256 - p_alpha;
  229. }
  230. out.c[0] = (uint8_t)((alpha * fg.c[0] + inv_alpha * bg.c[0]) >> 8);
  231. out.c[1] = (uint8_t)((alpha * fg.c[1] + inv_alpha * bg.c[1]) >> 8);
  232. out.c[2] = (uint8_t)((alpha * fg.c[2] + inv_alpha * bg.c[2]) >> 8);
  233. out.c[3] = 0xFF;
  234. return out.l;
  235. }
  236. protected:
  237. static void _bind_methods();
  238. public:
  239. // Virtual destructor so we can delete any Noise derived object when referenced as a Noise*.
  240. virtual ~Noise() {}
  241. virtual real_t get_noise_1d(real_t p_x) const = 0;
  242. virtual real_t get_noise_2dv(Vector2 p_v) const = 0;
  243. virtual real_t get_noise_2d(real_t p_x, real_t p_y) const = 0;
  244. virtual real_t get_noise_3dv(Vector3 p_v) const = 0;
  245. virtual real_t get_noise_3d(real_t p_x, real_t p_y, real_t p_z) const = 0;
  246. Vector<Ref<Image>> _get_image(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_in_3d_space = false, bool p_normalize = true) const;
  247. virtual Ref<Image> get_image(int p_width, int p_height, bool p_invert = false, bool p_in_3d_space = false, bool p_normalize = true) const;
  248. virtual TypedArray<Image> get_image_3d(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_normalize = true) const;
  249. Vector<Ref<Image>> _get_seamless_image(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_in_3d_space = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
  250. virtual Ref<Image> get_seamless_image(int p_width, int p_height, bool p_invert = false, bool p_in_3d_space = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
  251. virtual TypedArray<Image> get_seamless_image_3d(int p_width, int p_height, int p_depth, bool p_invert = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
  252. };
  253. #endif // NOISE_H