message_queue.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /**************************************************************************/
  2. /* message_queue.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "message_queue.h"
  31. #include "core/config/project_settings.h"
  32. #include "core/object/class_db.h"
  33. #include "core/object/script_language.h"
  34. #include <stdio.h>
  35. #ifdef DEV_ENABLED
  36. // Includes safety checks to ensure that a queue set as a thread singleton override
  37. // is only ever called from the thread it was set for.
  38. #define LOCK_MUTEX \
  39. if (this != MessageQueue::thread_singleton) { \
  40. DEV_ASSERT(!is_current_thread_override); \
  41. mutex.lock(); \
  42. } else { \
  43. DEV_ASSERT(is_current_thread_override); \
  44. }
  45. #else
  46. #define LOCK_MUTEX \
  47. if (this != MessageQueue::thread_singleton) { \
  48. mutex.lock(); \
  49. }
  50. #endif
  51. #define UNLOCK_MUTEX \
  52. if (this != MessageQueue::thread_singleton) { \
  53. mutex.unlock(); \
  54. }
  55. void CallQueue::_add_page() {
  56. if (pages_used == page_bytes.size()) {
  57. pages.push_back(allocator->alloc());
  58. page_bytes.push_back(0);
  59. }
  60. page_bytes[pages_used] = 0;
  61. pages_used++;
  62. }
  63. Error CallQueue::push_callp(ObjectID p_id, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
  64. return push_callablep(Callable(p_id, p_method), p_args, p_argcount, p_show_error);
  65. }
  66. Error CallQueue::push_callp(Object *p_object, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
  67. return push_callp(p_object->get_instance_id(), p_method, p_args, p_argcount, p_show_error);
  68. }
  69. Error CallQueue::push_notification(Object *p_object, int p_notification) {
  70. return push_notification(p_object->get_instance_id(), p_notification);
  71. }
  72. Error CallQueue::push_set(Object *p_object, const StringName &p_prop, const Variant &p_value) {
  73. return push_set(p_object->get_instance_id(), p_prop, p_value);
  74. }
  75. Error CallQueue::push_callablep(const Callable &p_callable, const Variant **p_args, int p_argcount, bool p_show_error) {
  76. uint32_t room_needed = sizeof(Message) + sizeof(Variant) * p_argcount;
  77. ERR_FAIL_COND_V_MSG(room_needed > uint32_t(PAGE_SIZE_BYTES), ERR_INVALID_PARAMETER, "Message is too large to fit on a page (" + itos(PAGE_SIZE_BYTES) + " bytes), consider passing less arguments.");
  78. LOCK_MUTEX;
  79. _ensure_first_page();
  80. if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
  81. if (pages_used == max_pages) {
  82. fprintf(stderr, "Failed method: %s. Message queue out of memory. %s\n", String(p_callable).utf8().get_data(), error_text.utf8().get_data());
  83. statistics();
  84. UNLOCK_MUTEX;
  85. return ERR_OUT_OF_MEMORY;
  86. }
  87. _add_page();
  88. }
  89. Page *page = pages[pages_used - 1];
  90. uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]];
  91. Message *msg = memnew_placement(buffer_end, Message);
  92. msg->args = p_argcount;
  93. msg->callable = p_callable;
  94. msg->type = TYPE_CALL;
  95. if (p_show_error) {
  96. msg->type |= FLAG_SHOW_ERROR;
  97. }
  98. // Support callables of static methods.
  99. if (p_callable.get_object_id().is_null() && p_callable.is_valid()) {
  100. msg->type |= FLAG_NULL_IS_OK;
  101. }
  102. buffer_end += sizeof(Message);
  103. for (int i = 0; i < p_argcount; i++) {
  104. Variant *v = memnew_placement(buffer_end, Variant);
  105. buffer_end += sizeof(Variant);
  106. *v = *p_args[i];
  107. }
  108. page_bytes[pages_used - 1] += room_needed;
  109. UNLOCK_MUTEX;
  110. return OK;
  111. }
  112. Error CallQueue::push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value) {
  113. LOCK_MUTEX;
  114. uint32_t room_needed = sizeof(Message) + sizeof(Variant);
  115. _ensure_first_page();
  116. if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
  117. if (pages_used == max_pages) {
  118. String type;
  119. if (ObjectDB::get_instance(p_id)) {
  120. type = ObjectDB::get_instance(p_id)->get_class();
  121. }
  122. fprintf(stderr, "Failed set: %s: %s target ID: %s. Message queue out of memory. %s\n", type.utf8().get_data(), String(p_prop).utf8().get_data(), itos(p_id).utf8().get_data(), error_text.utf8().get_data());
  123. statistics();
  124. UNLOCK_MUTEX;
  125. return ERR_OUT_OF_MEMORY;
  126. }
  127. _add_page();
  128. }
  129. Page *page = pages[pages_used - 1];
  130. uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]];
  131. Message *msg = memnew_placement(buffer_end, Message);
  132. msg->args = 1;
  133. msg->callable = Callable(p_id, p_prop);
  134. msg->type = TYPE_SET;
  135. buffer_end += sizeof(Message);
  136. Variant *v = memnew_placement(buffer_end, Variant);
  137. *v = p_value;
  138. page_bytes[pages_used - 1] += room_needed;
  139. UNLOCK_MUTEX;
  140. return OK;
  141. }
  142. Error CallQueue::push_notification(ObjectID p_id, int p_notification) {
  143. ERR_FAIL_COND_V(p_notification < 0, ERR_INVALID_PARAMETER);
  144. LOCK_MUTEX;
  145. uint32_t room_needed = sizeof(Message);
  146. _ensure_first_page();
  147. if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
  148. if (pages_used == max_pages) {
  149. fprintf(stderr, "Failed notification: %d target ID: %s. Message queue out of memory. %s\n", p_notification, itos(p_id).utf8().get_data(), error_text.utf8().get_data());
  150. statistics();
  151. UNLOCK_MUTEX;
  152. return ERR_OUT_OF_MEMORY;
  153. }
  154. _add_page();
  155. }
  156. Page *page = pages[pages_used - 1];
  157. uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]];
  158. Message *msg = memnew_placement(buffer_end, Message);
  159. msg->type = TYPE_NOTIFICATION;
  160. msg->callable = Callable(p_id, CoreStringName(notification)); //name is meaningless but callable needs it
  161. //msg->target;
  162. msg->notification = p_notification;
  163. page_bytes[pages_used - 1] += room_needed;
  164. UNLOCK_MUTEX;
  165. return OK;
  166. }
  167. void CallQueue::_call_function(const Callable &p_callable, const Variant *p_args, int p_argcount, bool p_show_error) {
  168. const Variant **argptrs = nullptr;
  169. if (p_argcount) {
  170. argptrs = (const Variant **)alloca(sizeof(Variant *) * p_argcount);
  171. for (int i = 0; i < p_argcount; i++) {
  172. argptrs[i] = &p_args[i];
  173. }
  174. }
  175. Callable::CallError ce;
  176. Variant ret;
  177. p_callable.callp(argptrs, p_argcount, ret, ce);
  178. if (p_show_error && ce.error != Callable::CallError::CALL_OK) {
  179. ERR_PRINT("Error calling deferred method: " + Variant::get_callable_error_text(p_callable, argptrs, p_argcount, ce) + ".");
  180. }
  181. }
  182. Error CallQueue::flush() {
  183. LOCK_MUTEX;
  184. if (pages.size() == 0) {
  185. // Never allocated
  186. UNLOCK_MUTEX;
  187. return OK; // Do nothing.
  188. }
  189. if (flushing) {
  190. UNLOCK_MUTEX;
  191. return ERR_BUSY;
  192. }
  193. flushing = true;
  194. uint32_t i = 0;
  195. uint32_t offset = 0;
  196. while (i < pages_used && offset < page_bytes[i]) {
  197. Page *page = pages[i];
  198. //lock on each iteration, so a call can re-add itself to the message queue
  199. Message *message = (Message *)&page->data[offset];
  200. uint32_t advance = sizeof(Message);
  201. if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
  202. advance += sizeof(Variant) * message->args;
  203. }
  204. //pre-advance so this function is reentrant
  205. offset += advance;
  206. Object *target = message->callable.get_object();
  207. UNLOCK_MUTEX;
  208. switch (message->type & FLAG_MASK) {
  209. case TYPE_CALL: {
  210. if (target || (message->type & FLAG_NULL_IS_OK)) {
  211. Variant *args = (Variant *)(message + 1);
  212. _call_function(message->callable, args, message->args, message->type & FLAG_SHOW_ERROR);
  213. }
  214. } break;
  215. case TYPE_NOTIFICATION: {
  216. if (target) {
  217. target->notification(message->notification);
  218. }
  219. } break;
  220. case TYPE_SET: {
  221. if (target) {
  222. Variant *arg = (Variant *)(message + 1);
  223. target->set(message->callable.get_method(), *arg);
  224. }
  225. } break;
  226. }
  227. if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
  228. Variant *args = (Variant *)(message + 1);
  229. for (int k = 0; k < message->args; k++) {
  230. args[k].~Variant();
  231. }
  232. }
  233. message->~Message();
  234. LOCK_MUTEX;
  235. if (offset == page_bytes[i]) {
  236. i++;
  237. offset = 0;
  238. }
  239. }
  240. page_bytes[0] = 0;
  241. pages_used = 1;
  242. flushing = false;
  243. UNLOCK_MUTEX;
  244. return OK;
  245. }
  246. void CallQueue::clear() {
  247. LOCK_MUTEX;
  248. if (pages.size() == 0) {
  249. UNLOCK_MUTEX;
  250. return; // Nothing to clear.
  251. }
  252. for (uint32_t i = 0; i < pages_used; i++) {
  253. uint32_t offset = 0;
  254. while (offset < page_bytes[i]) {
  255. Page *page = pages[i];
  256. //lock on each iteration, so a call can re-add itself to the message queue
  257. Message *message = (Message *)&page->data[offset];
  258. uint32_t advance = sizeof(Message);
  259. if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
  260. advance += sizeof(Variant) * message->args;
  261. }
  262. offset += advance;
  263. if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
  264. Variant *args = (Variant *)(message + 1);
  265. for (int k = 0; k < message->args; k++) {
  266. args[k].~Variant();
  267. }
  268. }
  269. message->~Message();
  270. }
  271. }
  272. pages_used = 1;
  273. page_bytes[0] = 0;
  274. UNLOCK_MUTEX;
  275. }
  276. void CallQueue::statistics() {
  277. LOCK_MUTEX;
  278. HashMap<StringName, int> set_count;
  279. HashMap<int, int> notify_count;
  280. HashMap<Callable, int> call_count;
  281. int null_count = 0;
  282. for (uint32_t i = 0; i < pages_used; i++) {
  283. uint32_t offset = 0;
  284. while (offset < page_bytes[i]) {
  285. Page *page = pages[i];
  286. //lock on each iteration, so a call can re-add itself to the message queue
  287. Message *message = (Message *)&page->data[offset];
  288. uint32_t advance = sizeof(Message);
  289. if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
  290. advance += sizeof(Variant) * message->args;
  291. }
  292. Object *target = message->callable.get_object();
  293. bool null_target = true;
  294. switch (message->type & FLAG_MASK) {
  295. case TYPE_CALL: {
  296. if (target || (message->type & FLAG_NULL_IS_OK)) {
  297. if (!call_count.has(message->callable)) {
  298. call_count[message->callable] = 0;
  299. }
  300. call_count[message->callable]++;
  301. null_target = false;
  302. }
  303. } break;
  304. case TYPE_NOTIFICATION: {
  305. if (target) {
  306. if (!notify_count.has(message->notification)) {
  307. notify_count[message->notification] = 0;
  308. }
  309. notify_count[message->notification]++;
  310. null_target = false;
  311. }
  312. } break;
  313. case TYPE_SET: {
  314. if (target) {
  315. StringName t = message->callable.get_method();
  316. if (!set_count.has(t)) {
  317. set_count[t] = 0;
  318. }
  319. set_count[t]++;
  320. null_target = false;
  321. }
  322. } break;
  323. }
  324. if (null_target) {
  325. // Object was deleted.
  326. fprintf(stdout, "Object was deleted while awaiting a callback.\n");
  327. null_count++;
  328. }
  329. offset += advance;
  330. if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
  331. Variant *args = (Variant *)(message + 1);
  332. for (int k = 0; k < message->args; k++) {
  333. args[k].~Variant();
  334. }
  335. }
  336. message->~Message();
  337. }
  338. }
  339. fprintf(stdout, "TOTAL PAGES: %d (%d bytes).\n", pages_used, pages_used * PAGE_SIZE_BYTES);
  340. fprintf(stdout, "NULL count: %d.\n", null_count);
  341. for (const KeyValue<StringName, int> &E : set_count) {
  342. fprintf(stdout, "SET %s: %d.\n", String(E.key).utf8().get_data(), E.value);
  343. }
  344. for (const KeyValue<Callable, int> &E : call_count) {
  345. fprintf(stdout, "CALL %s: %d.\n", String(E.key).utf8().get_data(), E.value);
  346. }
  347. for (const KeyValue<int, int> &E : notify_count) {
  348. fprintf(stdout, "NOTIFY %d: %d.\n", E.key, E.value);
  349. }
  350. UNLOCK_MUTEX;
  351. }
  352. bool CallQueue::is_flushing() const {
  353. return flushing;
  354. }
  355. bool CallQueue::has_messages() const {
  356. if (pages_used == 0) {
  357. return false;
  358. }
  359. if (pages_used == 1 && page_bytes[0] == 0) {
  360. return false;
  361. }
  362. return true;
  363. }
  364. int CallQueue::get_max_buffer_usage() const {
  365. return pages.size() * PAGE_SIZE_BYTES;
  366. }
  367. CallQueue::CallQueue(Allocator *p_custom_allocator, uint32_t p_max_pages, const String &p_error_text) {
  368. if (p_custom_allocator) {
  369. allocator = p_custom_allocator;
  370. allocator_is_custom = true;
  371. } else {
  372. allocator = memnew(Allocator(16)); // 16 elements per allocator page, 64kb per allocator page. Anything small will do, though.
  373. allocator_is_custom = false;
  374. }
  375. max_pages = p_max_pages;
  376. error_text = p_error_text;
  377. }
  378. CallQueue::~CallQueue() {
  379. clear();
  380. // Let go of pages.
  381. for (uint32_t i = 0; i < pages.size(); i++) {
  382. allocator->free(pages[i]);
  383. }
  384. if (!allocator_is_custom) {
  385. memdelete(allocator);
  386. }
  387. // This is done here to avoid a circular dependency between the safety checks and the thread singleton pointer.
  388. if (this == MessageQueue::thread_singleton) {
  389. MessageQueue::thread_singleton = nullptr;
  390. }
  391. }
  392. //////////////////////
  393. CallQueue *MessageQueue::main_singleton = nullptr;
  394. thread_local CallQueue *MessageQueue::thread_singleton = nullptr;
  395. void MessageQueue::set_thread_singleton_override(CallQueue *p_thread_singleton) {
  396. DEV_ASSERT(p_thread_singleton); // To unset the thread singleton, don't call this with nullptr, but just memfree() it.
  397. #ifdef DEV_ENABLED
  398. if (thread_singleton) {
  399. thread_singleton->is_current_thread_override = false;
  400. }
  401. #endif
  402. thread_singleton = p_thread_singleton;
  403. #ifdef DEV_ENABLED
  404. if (thread_singleton) {
  405. thread_singleton->is_current_thread_override = true;
  406. }
  407. #endif
  408. }
  409. MessageQueue::MessageQueue() :
  410. CallQueue(nullptr,
  411. int(GLOBAL_DEF_RST(PropertyInfo(Variant::INT, "memory/limits/message_queue/max_size_mb", PROPERTY_HINT_RANGE, "1,512,1,or_greater"), 32)) * 1024 * 1024 / PAGE_SIZE_BYTES,
  412. "Message queue out of memory. Try increasing 'memory/limits/message_queue/max_size_mb' in project settings.") {
  413. ERR_FAIL_COND_MSG(main_singleton != nullptr, "A MessageQueue singleton already exists.");
  414. main_singleton = this;
  415. }
  416. MessageQueue::~MessageQueue() {
  417. main_singleton = nullptr;
  418. }